
1

Creating and Using
ColdFusion Custom Tags

Charles Arehart
SysteManage
November, 2000

updated 11/14/00

Topics

n Custom Tags: What they are, how they work
n Protection of Variables
n Passing Data to and From Custom Tags
n Creating Return Codes for Custom Tags
n Using Paired

2

Notice

This presentation was created and last
updated in November 2000, well prior to the

release of CF5 and its support for User
Defined Functions (UDFs).

UDFs certainly present yet another way to
reuse code, and should be considered

separately. The information presented here,
however, is still accurate and useful.

Tips and Tricks to be Covered

n Will cover the basics of Custom Tags, for
those new to them

n But those already familiar with them may learn
a few things not often understood:
– Why you don’t need to pass form, url, session

vars, etc. to a custom tag
– How to provide custom tag return codes
– How to manipulate data between an opening

and closing custom tag pair
– And more

3

Custom Tags: What they are, how
they work

n Typically used to allow
reference to reusable
code

n Somewhat equivalent to
subroutines, functions,
or procedures in other
languages
– One template calls

another, to perform
some action

n Called program referred
to as a “custom tag”
– Term comes from

the approach
typically used to call
them, <cf_template>

<h2>I’m in
“test”</h2>

<cf_doit>

Done with
test <h2>I’m in

“DoIt”</h2>

I’m in “test”

I’m in “DoIt”
Done with test

Result to user
running test.cfm

Test.cfm

DoIt.cfm

Custom Tag Location

n Can place custom tag template in same
directory as caller
– So it is accessible only by templates in that

directory
n Or can place custom tag in special “globally

accessible” directory, c:\cfusion\customtags
– So it is accessible to all templates on server

n Using the syntax we’ve seen, <cf_tagname>,
ColdFusion looks for custom tag first in
directory of caller, then in global directory

n Can even store and call a custom tag in
another directory relative to the caller, or
relative to the webroot, using CFMODULE
– beyond the scope of this class to discuss

4

Why are they useful?

n That simple example doesn’t do justice
n Custom Tags are typically much more useful

– Can relieve entering code repetitively in
several templates

– Can encapsulate complicated code to be
reused often

– Can hide complexity of solving a given problem
– Can help segregate business rules from

display and page processing logic
– Can provide solutions to common problems

• offered for all CF developers at Allaire’s
Developer’s Exchange

How are they different from
subroutines and functions?

n ColdFusion has no notion of subroutines or
user defined functions
– As are offered in many other languages
– Such reusable code is typically embedded

within the program making the call
n Calls to a Custom Tag always call another

program
– Typically a ColdFusion template
– Can be C++ routines

• Beyond scope of this seminar to discuss

5

Similarity: Variables are Protected

n Like most languages’
subroutines and user-
defined functions
– Access to variables is

restricted between
caller and custom tag

• Custom tag cannot
refer to local
variables created in
calling routine

• Attempt will lead to
error

– Will learn how to pass
caller data to custom
tag

<h2>I’m in
“test2”</h2>

<cfset x=1>

<cf_doit2>

Done with
test2

<h2>I’m in
“DoIt2”</h2>

<cfoutput>#x#
</cfoutput>

I’m in “test2”

CF ERROR
#x# is undefined
in DoIt2.cfm

Result to user
running test2.cfm

Test2.cfm

DoIt2.cfm

Likewise: Caller is Also Blind

n Variables created within
custom tag cannot be
viewed or manipulated
by the calling routine
– Protects variables in

caller from being
overwritten by
custom tag

– Frees developer of
calling template from
worry

• Custom tag is a
“black box”

– May want to return
data intentionally

• Will show later

<h2>I’m in
“test3”</h2>

<cfset x=1>

<cf_doit3>

Done with
test3

<cfoutput>

x=#x#
</cfoutput>

<h2>I’m in
“DoIt3”</h2>

<cfset x = 2>

Test3.cfm

DoIt3.cfm

I’m in “test3”

I’m in “DoIt3”
Done with test3
x=1

Result to user
running test3.cfm

Note x=1, not 2

6

Passing Data To a Custom Tag
n For custom tag to perform

operation based on data in
caller, data must be
passed to it
– Passed in as

attribute=value pairs
– Any number of pairs

may be passed
– Order, case is not

significant
n Data is accessible within

custom tag using
“attributes.” prefix
– One attributes.varname

variable for each
attribute=value pair
passed

<h2>I’m in
“test4”</h2>

<cf_doit4
name=“charlie”>

Done with test4 <h2>I’m in
“DoIt4”</h2>

<CFOUTPUT> Hi,
#attributes.name#
</CFOUTPUT>

I’m in “test4”

I’m in “DoIt4”
Hi, Charlie
Done with test4

Result to user
running test4.cfm

Test4.cfm

DoIt4.cfm

What Can Be Passed To Custom Tag?

n Any ColdFusion element
can be passed to a
custom tag, including:
– String
– Number

– Variable
– Array
– Structure
– Query
– Etc.

7

Passing a Variable to a Custom Tag
n Passing a variable to a

custom tag is
straightforward

n Best practice:
– Surround variable with

pound signs within
quotes

n Note the
attributes.variable name
– It’s “name”, not

“fname”, in example

<cfset
fname=“charlie”>

<cf_doit5
name=“#fname#”>

<CFOUTPUT> Hi,
#attributes.name#
</CFOUTPUT>

Hi, Charlie

Result to user
running test5.cfm

Test5.cfm

DoIt5.cfm

Passing a Structure

n Passing a structure, or
even a query, to a custom
tag is also easy
– Pass it like any other

variable
n Two modest challenges

– Note the
attributes.variable
name

• It’s “person”, not
“emp”, in example

– Also, note use of
structure.keyname
notation in
attributes.variable
references

<cfset emp = structnew()>
<cfset
emp.fname=“charlie”>
<cfset
emp.lname=“arehart”>

<cf_doit6 person=“#emp#”>

<CFOUTPUT> Hi,
#attributes.person.fname#

#attributes.person.lname#
</CFOUTPUT>

Hi, charlie arehart

Result to user
running test6.cfm

Test6.cfm

DoIt6.cfm

8

What Variables Need NOT Be Passed?

n No need to pass these
to a custom tag, as
they’re always
available!
– Variables passed

“to” the caller itself:
• URL, FORM
• CGI, COOKIE, etc.

– “Global” variables:
• Session
• Client
• Application
• Server
• Request

n Only local variables (and
structures and queries)
created in caller need to
be passed

Overriding Variable Protection
n Can override variable

protection
n Custom tags can indeed

read local variables
created in caller
– Even if not passed

n Special “caller.” prefix
removes protection of
variable
– Allows custom tag to

refer to variables
created in “caller”

n Should use carefully
– Removes “black box”

characteristic

<cfset x=1>

<cf_doit7>

<cfoutput>
x=#caller.x#
</cfoutput>

x=1

Result to user
running test7.cfm

Test7.cfm

DoIt7.cfm

9

Using “Caller.” to Return Data
n Similarly, custom tag can

even write to a local
variable created in caller
– Or create a new one!

n Using “caller.” prefix for
assignment creates
variable intended to be
seen by caller
– Refer to this in caller

just as if variable was
created in caller

n Again, can be risky
– But a good use is to

return a result variable
or “return code” from a
custom tag

<cf_doit8>

<cfoutput>
x=#x#
</cfoutput>

<cfset caller.x
= 2>

x=2

Result to user
running test8.cfm

Test8.cfm

DoIt8.cfm

Creating Return Codes

n Can use “caller.” scope to create return codes
from custom tags
– Good practice, furthers similarity to subroutines

and user-written functions
– In previous example, variable “x” could have

been named “rc” or “retcode”, etc.
n Be careful choose name that doesn’t

overwrite a variable existing in the caller
– One solution is to use a very unique name,

such as caller.ctname_variablename
– Yet another approach is to use CF’s flexibile

“object.property” notation for variables
• Consider using caller.ctname.variablename
• Don’t even need to create a ctname structure

first to use this approach

10

Passing Returncode Name on Call

n Yet another approach is to design custom tag
to allow caller to specify name of returncode
– Provides greatest flexibility to caller
– Caller can choose name it will expect returned

n Requires just a little more programming effort
in custom tag
– Gets into issues of supporting optional

parameters
– As well as creating variable names dynamically

n Covered in the Allaire Advanced ColdFusion
Development Course

Comparing Custom Tags to Using
CFInclude

n Newcomers inevitably wonder about this
– Both are a way to reuse code

n Should be clear by now, if familiar with
CFINCLUDE
– Custom tags are quite different

11

CFINCLUDE vs. Custom Tags

n Key differences in Custom Tags
– Protected variables
– Passing and returning data
– Custom tags accessible to all when placed in

c:\cfusion\customtags directory

n puts caller on hold
n executes custom tag
code in own scope
n returns control to caller

n pulls code into caller
n to be executed inline
with caller code

Custom TagsCFINCLUDE

Paired (Start and End) Tags

n One last topic, CF 4.0 introduced notion of
paired custom tags, as in:
<cf_mytag>
</cf_mytag>

n Two primary benefits to this approach:
– Ability to process data between the pair
– Ability to have nested tags within the pair

n Will focus first on passing data between
paired tags
– Will conclude with a look at nested tags

12

Passing Data Between Paired Tags

n Until now, only way to pass data to custom
tag was by way of attributes

n With paired tags, data between tags is
“passed” in
– Available as variable called

“thistag.generatedcontent”
n Not quite as straightforward as that

– Need to understand double execution of
custom tag template

Double Execution of Paired Tags

n With paired tag,
template actually runs
twice
– Not as silly as it

seems
– But must anticipate

this
n Need to further

understand another
special variable

<cf_doit9>
</cf_doit9>

This is a test

This is a test This is a test

Result to user
running test9.cfm

Test9.cfm

DoIt9.cfm

13

Thistag.executionmode
n Variable available inside

custom tag whenever
paired custom tags are
used
– Has value of “start”

when template is being
run by way of “opening”
tag call

– Has value of “end” when
run by way of “closing”
tag call

<cf_doit10>
</cf_doit10>

In ct:
<cfoutput>
#thistag.executionmode#
</cfoutput>

In ct: start
In ct: end

Result to user
running test10.cfm

Test10.cfm

DoIt10.cfm

Thistag.generatedcontent

n Data between tags is
available as
thistag.generatedcontent
– available only in “end”

mode
n Can use it to process the

text between the tags
– Perhaps store data in

db
n Note that the text between

the tags is displayed
before the processing of
closing tag
– Can stop that

<cf_doit11>
test
lines
</cf_doit11>

<cfif thistag.executionmode is
“end”>

Storing in DB:
<!–-- cfquery to store
#thistag.generatedcontent#

in db --->
</cfif>

test lines
Storing in DB:

Result to user
running test11.cfm

Test11.cfm

DoIt11.cfm

14

Preventing display of the text
between paired tags

n Text between the tags is
displayed before
executing in end mode

n To prevent this:
– simply assign an

empty string to the
special variable
during the end mode
after processing

– may not seem logical
that assigning it an
empty string inside
the custom tag will
prevent it displaying
before the end
mode, but it does

<cf_doit12>
test
lines
</cf_doit12>

<cfif thistag.executionmode is
“end”>

Storing:
<!–-- cfquery to store
#thistag.generatedcontent#

in db --->
<cfset

thistag.generatedcontent=“”>
</cfif>

Storing:

Result to user
running test12.cfm

Test12.cfm

DoIt12.cfm

Altering the text between tags

n A natural next step
– manipulate the text

between the tags
– Produce that as the

result of calling the
custom tag

n Just assign the
manipulation of
thistag.generatedcontent
back to itself
– That result will be

displayed, not the
original text

<cf_doit13>
test
lines
</cf_doit13>

<cfif thistag.executionmode is
“end”>

<cfset
thistag.generatedcontent=ucase(th
istag.generatedcontent)>
</cfif>

TEST LINES

Result to user
running test13.cfm

Test13.cfm

DoIt13.cfm

15

Formatting such text for display

n May have noticed the input:
test
lines

n Was presented to the user as a single line of
output:

test lines
n This is simply a matter of understanding that

HTML ignores line breaks and spaces
n CF’s paragraphformat() function might seem

the solution
– but it only converts two line breaks to a <p>
– It does not convert one line break to a

My Textareaformat custom tag

n Found on the Allaire
developer’s exchange
– Solves this problem

n Converts:
– Single line break to

– Double line break to

<p>
– Multiple spaces to

multiple ’s
– Converts Tabs to 8

 ’s
n Would itself be a good

candidate for paired tag
design

<cf_doit14>
test

lines
</cf_doit14>

<cfif thistag.executionmode is “end”>
<cfset

hold=thistag.generatedcontent>
<cf_textareaformat

input="#ucase(hold)#">
<cfoutput>
#htmlformatted_string#
</cfoutput>

</cfif>

Test
Lines

Result to user
running test14.cfm

Test14.cfm

DoIt14.cfm

16

Thistag.hasendtag

n Finally, thistag.hasendtag is used to
determine if a paired tag has a closing tag
– May want to stop if closing tag not provided
– May want to operate differently when there is

versus when there isn’t
• Probably should also test if generatedcontent is

not empty

n Simply has a value of “yes” if there is, “no” if
there isn’t
– Available in both start and end mode

Nested Tags (Parent-Child Tags)

n Nested Tags are an extension of paired tags
n Example:

<cf_myparenttag>
<cf_mychildtag>
<cf_mychildtag>

</cf_mytag>
n Tags executed in order, as with paired tags

– Can simply use this to segment code into
components

n Can also use child tags to gather data to pass
to parent’s end tag
– See CFASSOCIATE tag for more information

17

Summary

n Custom Tags: What
they are, how they work

n Protection of Variables
– Isolated from harm

n Passing Data to and
From Custom Tags
– Attributes and caller

scopes
n Creating Return Codes

for Custom Tags
– Setting caller

variable
n Using Paired Tags

– executionmode
– Generatedcontent
– hasendtag

Resources

n Allaire Developer's Exchange
– free and low-cost reusable components
– Many categories available

n Allaire Advanced CF Course
– Covers many more aspects

n April &May ColdFusion Developer’s Journal
– “Calling All Custom Tags”, parts 1 & 2
– Covers still more details

n Of course, the Allaire manuals, particularly
“Developing Web Apps with CF”
– Available online within Studio and CF server

n Any of the several CF books now or soon to
be on the market

18

Q&A and evals

