CF and JSP/Servlets

Developed originally by Robi Sen
For the CF UnderGround Il Seminar, Apr 2001

Edited and enhanced by Charlie Arehart
(Robi had an emergency and couldn’t make it)

Topics Covered

= Overview JSP/Servlets

m Comparison of CF and JSP Tags
= Variables

Application Scope

Conditional Processing

Reusing Common Code

Sessions

Database Access

m JSP/Servlet Engine, Tool Vendors

m Leveraging Java in CF Today

m Learning More

What are they?

= JSP/Java Servlets
= Servlets
= Comparable to CGI/ISAPI/NSAPI programming, in Java vs
Perl

m Java class that dynamically extends the function of a Web
Server

= Handle HTTP requests and generate HTTP responses
n JSP
= Tag-based scripting and page-template interface to Java
development, a la CF
= High level abstraction language to servlet standard

Server
Process
for JSP

What CF has over JSP

= ColdFusion offers:
= Faster learning curve

= More features in language out of the box

= (i.e. cftransaction, cfhttp, cfftp, cached queries,
queries of queries)

» Greater abstraction, high productivity
= Greater maturity as web application

What JSP over CF

= JSP offers:
= Platform Agnostic(Write Once Run Anywhere)
» Scalability and Robustness
= Performance and power
m Access to Enterprise Technologies
= Manageability
= Standardization
= Massive adoption and developer community

JSP VS CF

= As well as:
= Greater acceptance
= Better reputation
= More developer resources
= And being based on Java
= Object oriented
= Many libraries

Underlying JSP/Servlets is Java

= Not really appropriate to see JSP as “just an
alternative scripting environment”
= Yes, pretty easy to compare simple things
= Really need to understand Java to use effectively
= And to fully leverage the power it brings
= Underlying JSP is servlets
= Some things easier to do in one or the other
= JSP generally favored when creating lots of HTML
on a page
» JSP can be seen as your entrée to servlets

Exploring JSP vs. CF Tags

s CF
= Begin with CF (e.g., <CFOUTPUT>)
= Most have closing tags (e.g.,
<CFOUTPUT>HTML code</CFOUTPUT>
= JSP
= Begin with <% and end with %>
= Contain Java code, expressions, directives,
etc.

CF Tags vs. JSP Tags

= May help to consider comparing CF and JSP for
performing common tasks
= <CFSET> = <%! %>
= <CFSCRIPT> = <% %>
= <CFOUTPUT> = <%= %>
n <%@ %>

= <CFCONTENT> (set the output MIME type) vs <%@ page
contentType="text/xml" %>

» <CFAPPLICATION> (turn on session-state management)

Where Files Are Stored

= Will depend on Java App Server

= I’'m using Jrun, which supports multiple
servers, and multiple applications—doing
demo in “Demo” server
= Files stored at:
m D:\Program Files\Allaire\JRun\servers\default\demo-app\jsp

= JRUN sets up web server mapping to find files at:
= http://localhost:8100/demol/jsp/filename.jsp

= Have set up mapping in Studio to enable browse

Variables

= Variable Type (string, integer, etc.)
» Type-less in ColdFusion
= Strongly typed in JAVA
m Case Sensitivity
= Ignored in CF
= Enforced in JSP

Defining Variables

n CF
<CFSET firstName=“John’>
<CFOUTPUT>Hel lo
#FirstName#</CFOUTPUT>

n JSP

<%! String FirstName = “John”; %>
Hello <%= FfirstName %>

Defining Variables

= Can also perform “pure” java statements
within JSP, as a “scriptlet”
= which can be useful in some situations
= though not particularly so, here

<% String fName = "John";
out_printin("Hello ** + fName); %>

Conditional Processing

m <CFIF>

<CFIF expression>
HTML and CFML tags executed if expression is true

<CFELSE>
HTML and CFML tags executed if expression is false

</CFIF>

m if/else in pure Java (servlet, class,
scriptlet)

<% if(expression) {
// Java code to execute if expression is true

3} else {

// Java code to execute if expression is false

3} %>

Conditional Processing

m if/else in JSP
<% if(expression) { %>
HTML and JSP tags executed if expression is true
<% } else { %>
HTML and JSP tags executed if expression is false

<% } %>

Conditional Processing

m Conditional Expressions in CF/JSP
= Really about CF vs Java expressions,

as in:
=S vs == or .equals()
uIS NOT vs I=

Conditional Processing

m <CFLOOP>

<CFLOOP FROM=**1" TO=**10" INDEX="“1"">
<CFOUTPUT>#i#</CFOUTPUT>

</CFLOOP>

= “for” loop in pure Java
<% For(int i=1; i<=10; i++) {
out.printIn(i + “
");
} %>

Conditional Processing

= “for” loop in JSP

<% for(int i=1; i<=10; i++) { %>
<%= i %>

<% 3 %>

Reusing Common Code

n CF

= <CFINCLUDE TEMPLATE=*/Templates/header.cfm”>
n JSP

» <%@ include file = "path™ ... %>
m or

= <jsp:include page=*/Templates/header.jsp”/>
= More like CF custom tag call

= Goes to other page, executes, and returns

= Passes request object to called page

Redirection

n CF
» <CFLOCATION URL=“/Forms/demo.cfm”>

m Java

= <% RequestDispatcher aDispatcher =
request.getRequestDispatcher(“/Templates/hea
der.jsp™);

= aDispatcher.include(request, response); %>

m JSP

<jsp:forward page="/Forms/demo.cfm" />

Comments

n CF

m <I-—- comment --->

= Java
m <% // one line comment;
/* multi
line comment */;%>

= JSP

<%-- comment --%>

Session State Maintenance

n CF
= Cookies
= Application.cfm
= Application variables
= Session variables

Application Scope

= Application Variable
= Shared among all users of application
<CFSET Application.myVariable=*somevalue”>
#Application.myVariable#

= Application object in JSP
= Shared among all users of application
<% application._setAttribute(“myVariable”,

“somevalue™);
out.printin(application.getAttribute(“myVariable™)

); %>

Application Scope

= ServletContext object
= Shared among all users of servlet

<%
getServiletContext() .setAttribute(“myVar
iable”, “somevalue™);
getServletContext() .getAttribute(“myVaria
ble”); %>

Session State Maintenance

m CF “session.” variables

<cfset session._name = “john doe”>
= Servlet HttpSession object

<% HttpSession aSession = request.getSession();
aSession.setAttribute(“name”, “John Doe™); %>

= JSP session object is an instance of the
HttpSession object.

<% session.setAttribute(“name”, “John Doe’) ;%>

Database Access

= ODBC
» Standard database access method

= Inserts a middle layer (driver) between the
database and the application

= JDBC (Java Database Connectivity)
= Based on ODBC

= Allows access to any tabular data source from
the Java programming language

Database Access: In CF

= Use CF Administrator to set the DataSource
= Query the database using <CFQUERY>
<CFSET variables.anlD = 2>

<CFQUERY NAME=“‘myquery”’
DATASOURCE=*“mydatabase”>

select firstname, lastname from mytable
where id = #variables.anID#</CFQUERY>
Accessing the data from the ResultSet
#myquery . Firstname#

#myquery . lastname#

Database Access: In CF

= Displaying the ResultSet
= One Row
<CFOUTPUT>

The name is #myquery.Ffirstname#
#myquery . lastname#

</CFOUTPUT>
= Many Rows
<CFOUTPUT QUERY=*myquery’’>

The name is #myquery.Ffirstname#
#myquery . lastname#

</CFOUTPUT>

Database Access: In Java

= Set the DataSource using a GUI tool (e.g., Jrun
Mgt Console)
= In “default server”
= Edit “jdbc data sources”
= Click edit to create a new one
= If already defined on server in odbc
m Enter its name, in “name” (ie, cfexamples)
= Enter sun.jdbc.odbc.JdbcOdbcDriver for “driver”
m Enter “jdbc:odbc:cfexamples” for url
m Enter any other needed info (userid, password)
= “Update”, then “test”

Database Access: In Java

= In page, import needed libraries
<%@ page import="java.sql.*, javax.sql.*,
Javax.naming.*" %>

= Obtain a reference to the DataSource using JNDI

<% InitialContext aContext = new
InitialContext();

DataSource myDataSource = (DataSource)
aContext. lookup(“java:comp/env/jdbc/cfexampl
es™) ;%>

Database Access: In Java

= Call the DataSource method
getConnection() to establish a connection

Connection con =
myDataSource.getConnection();

Database Access: In Java

= Create/Prepare the Statement

PreparedStatement aStatement =
con.prepareStatement(“select firstname,
lastname from cfexamples where empid = ?7);

aStatement.setInt(l, 2);

= Sets the first parameter (?) to the value 2
= Finds empid=2

Database Access: In Java

= Execute the query using the Statement
object’'s method executeQuery() method or
the CallableStatement object’s execute()
method.

ResultSet rs = aStatement.executeQuery();

» Accessing the data from the ResultSet

rs.getString(1);

rs.getString(2);

Displaying ResultSet: Scriptlets

= One Row

if(rs.next(Q)) {
out.printin(*Hello * +
rs.getString(l) +

rs.getString(2));
}

= Many Rows
while(rs.next()) {

out.printin(*Hello “ +
rs.getString(l) +

rs.getString(2));

}

Displaying ResultSet: JSP

= One Row
<% if(rs.nextQ)) { %>
Hello <%= rs.getString(1l); %>
<%= rs.getString(2); %>
<% } %>
= Many Rows
<% while(rs.next(Q)) { %>
Hello <%= rs.getString(l); %>
<%= rs.getString(2); %>
<% } %>

More topics to learn

m Java
= Language, libraries, data types
= Concepts like classes, methods, packages,

public/private/protected/"friendly”, static/final, much
more

n J2EE

= JDBC, Enterprise Java Beans, JINI, JNDI, JMS, etc.
n JSP

= JSP Custom Tags

m JSP Page Directives

= Error Handling ...

More topics to learn

= SQL in scripts vs EJB
= Servlets/JSP

= Request/response objects, headers, response
codes

m Integrating servlets and JSP’s

= Battle line among supporters of each

= Best used in tandem, where each best fits
= And much more

Learning More

m Excellent documentation with Jrun
= Several books

m Core Servlets and JSP, Marty Hall

m Professional JSP, Wrox Press
= Pure JSP, James Goodwill
n

Java Server Pages Application Development, Scott
Stirling, Ben Forta, et al

= And others
= Thinking in Java, Bruce Eckel
= eckelobjects.com

Learning More

= Several CFDJ Articles
= Java For Cfers, Ben Forta
= 3 parts, starting November 2000
» ColdFusion & Java: A Cold Cup o’ Joe, Guy
Rish
= 9 parts, starting in Jan 2001
m Also see Java Developer’s Journal

JSP/Servlet Engine Providers

= Allaire Jrun
= 3 person developer edition available free!
» Can install on same server as CF Server

= |IBM WebSphere
= BEA WebLogic
= Apache/TomCat
m others

Java Editing Tools

= Jrun Studio
= CF Studio also supports JSP
n Kawa

= Others, from competing JSP engine
providers

CF 6.0 AKA NEO

m CF, as we know it
= But on top of a Java, rather than C++ platform
= Basically transparent to CF developers
= Strength of JAVA, ease of CF
= Backwards compatibility
= Scalability built on a leading container (JRUN)
= May be made available on other Java Server
vendor platforms (IBM, BEA, etc.)
= Still being debated by Allaire, | understand

Leveraging Java in CF Today

m CFSERVLET

= CFOBJECT

= Java Custom Tags

m TagServlet (from n-ary.com)

= “wolf in sheep’s clothing” trick

= How to look like you're converting your CF
code to use JSP when you're really not ©

Times Up!

= Hope you enjoyed the session
= Send questions to:

= Charlie Arehart

» Carehart@systemanage.com

