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Part 2 of 3

Ø This seminar is part 2 of 3 being presented today
– First two in conference “beginner” track

• Database 1: Using Databases & SQL Basics
• Database 2: Slicing and Dicing Data in CF and SQL

– Part 3 in “Advanced” track
• Database 3: Improving Database Processing

– At 2:45 in Green Room

Ø Most topics are not CF-specific at all
– Will apply just as well to J2EE, ASP, PHP 

developers
– A small bit of CF used will be easily picked up
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Slicing and Dicing Data in Many 
Ways
Ø There’s more to database processing than simply 

selecting columns for display. May want to 
massage the data:
– Handling distinct column values

• Show each distinct lastname for employees
• Create a phone directory with each lastname listed 

only once
– Manipulating data before or after selecting it

• Show the first 30 characters of a description column
• Find rows where the year in a date column is a 

particular year
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Slicing and Dicing Data in Many 
Ways
Ø As well as:

– Summarizing data
• Show how many employees we have
• Show how many employees make more than $40k
• Show how many employees have not been 

terminated
• Show the average, max, and min salary for all 

employees
• Show the total salary for all employees
• Show how many distinct salary levels there are
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Slicing and Dicing Data in Many 
Ways (cont.)
Ø As well as:

– Grouping Data
• Show those counts, averages, or totals by department
• Show those departments whose count/avg/total meets some 

criteria

– Handling Nulls
• Show employees who have not been terminated 

(TerminationDate column is null)
• Count how many employees do not live in NYC

– Cross-referencing tables
• Show each employee and their department
• Show all employees and their department, even if not assigned 

to one
• Show each employee and their manager
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Working with Data in SQL 
Versus ColdFusion
Ø SQL provides the means to do each of those tasks

– And ColdFusion has some means to do some of them
Ø Many developers create complicated CF programs to do 

what both CF and SQL can enable with simpler constructs
– Same problems arise in other web app dev environments

Ø Experienced developers will admonish:
– Don’t do things in your program that you can better do in SQL
– The challenge is deciding which to use

Ø This seminar is about:
– making maximum use of both CF and SQL for query 

processing and data manipulation
– saving time for you and your system
– creating more effective applications
– Only 1 topic, though, is CF-specific. Rest is pure SQL
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ColdFusion vs SQL Functions

Ø You may know that CF offers hundreds of functions, for 
string, numeric, date, list and other manipulation
– These are used in a format such as Left(), DateFormat()
– Used within CF expressions, can be used to build SQL
– Evaluated before SQL is passed to the DBMS

Ø SQL also offers several functions, as we will learn
– Also used in same format, such as Left()
– Indeed, many share the same name!
– Evaluated by DBMS while processing the SQL

• Effects how the query results appear or are processed

Ø Could indeed use both CF and SQL functions in a given SQL 
statement
– Again, need to take care in deciding which to use
– In this seminar, focus is on SQL functions
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Handling Distinct Column 
Values
Ø Typical Problems:

– Show each distinct lastname for employees
– Create a phone directory with each lastname listed 

only once

Ø Can try to do it manually, looping through all rows 
and placing unique values in an array
– Tedious, Slow, Unnecessary!

Ø Both SQL and ColdFusion have simple solutions to 
produce list of unique values
– Use SQL approach to obtain just unique values
– Use CF approach to create report breaks on each 

unique value
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Ø Problem: Show each distinct lastname for employees

Ø Solution: DISTINCT keyword used before column name

Ø Example: (assuming we had a Lastname column)

Ø Possible Query Result Set Values:
Abbot
Brown
Coleman

Ø Note: when used with multiple columns, DISTINCT must be 
specified first. Applies to all columns
– Can’t do SELECT Degree, DISTINCT Salary
– Can do SELECT DISTINCT Salary, Degree

• Creates distinct instances of the combined values from each

Handling Distinct Column 
Values: DISTINCT Keyword

SELECT Distinct LastName
FROM Employees
ORDER BY Lastname
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Handling Distinct Column 
Values: CFOUTPUT GROUP
Ø Could have solved that same problem in CF

– Either manually (don’t do it!)
– Or by way of CFOUTPUT’s GROUP attribute

• Provide name of column by which data was sorted
• Will show only the unique values of that column

Ø Would produce equivalent result to that on previous slide
– Note that it has nothing to do with GROUP in SQL (later)
– It works. But for this problem, DISTINCT is better
– Power of CFOUTPUT GROUP, though, is in showing both the 

distinct values and all the other rows for each value

<CFQUERY DATASOURCE=“ProdPrsnl” NAME=“GetEmployees”>
SELECT LastName FROM Employees
ORDER BY LastName 

</CFQUERY>
<CFOUTPUT QUERY=“GetEmployees” GROUP=“LastName”>

#LastName#<br>
</CFOUTPUT>
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Handling Distinct Column Values: 
CFOUTPUT GROUP (cont.)
Ø Problem: Create a phone directory with each lastname listed 

only once
Ø Solution: CFOUTPUT GROUP, with embedded CFOUTPUT to 

process each row per unique value
Ø Example:

Ø Possible Results:
Abbot
John A – x3456
John R – x3476
Brown
Alice C – x3421
Coleman
Bob H – x3499

<CFQUERY DATASOURCE=“ProdPrsnl” NAME=“GetEmployees”>
SELECT LastName, Minit, FirstName, Phone 
FROM Employees
ORDER BY LastName 

</CFQUERY>
<CFOUTPUT QUERY=“GetEmployees” GROUP=“LastName”>

<u>#LastName#</u><br>
<CFOUTPUT>

#FirstName# #Minit# - #Phone#<br>
</CFOUTPUT>

</CFOUTPUT>

Once per 
LastName

Once for each 
row having 
that LastName
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Handling Distinct Column Values: 
CFOUTPUT GROUP (cont.)
Ø Can nest CFOUTPUT Groups

– Once for each ORDER BY column listed
Ø Example:

Ø Possible Results:
Abbot
John 

• A - x3456
• R - x3476

Brown
Alice

• C - x3421
Coleman
Bob

• H – x3499

<CFQUERY DATASOURCE=“ProdPrsnl” NAME=“GetEmployees”>
SELECT LastName, FirstName, Minit, Phone 
FROM Employees
ORDER BY LastName, FirstName 

</CFQUERY>
<CFOUTPUT QUERY=“GetEmployees” GROUP=“LastName”>

<u>#LastName#</u><br>
<CFOUTPUT GROUP=“FirstName”>

#FirstName#<br><ul>
<CFOUTPUT>

<li>#Minit# - #Phone#
</CFOUTPUT>
</ul>

</CFOUTPUT>
</CFOUTPUT>

No QUERY
attribute

Once for each 
row having 
same
LastName and 
FirstName
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Manipulating Data with SQL

Ø Typical Problems:
– Show the first 30 characters of a description column
– Find rows where the year in a date column is a 

particular year

Ø Tempting to try with CF functions
– May be wasteful, or impossible

Ø SQL functions may be more efficient, and could 
even have more features
– In any case, remember admonition:

• Don’t do in CF that which you can do in SQL
– Beware: while some SQL functions are shared by all 

DBMS’s, each supports its own or variations
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Manipulating Data with SQL: 
Text Functions
Ø Problem: Show the first 30 characters of a 

description column
– Can certainly use CF’s Left() function to substring 

the result passed back from SQL
• But this means sending all data from DB to CF, only 

to then be stripped down to 30 chars. Wasteful!

Ø Solution: Use SQL Left() function

Ø Example:

Ø Note: There are many other similar text 
manipulation functions, depending on DBMS
– Length(), Lower(), Upper(), Ltrim(), Soundex(), etc.
– Investigate DBMS documentation to learn more

SELECT Left(Description,30) FROM Products
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Manipulating Data with SQL: 
Date Functions
Ø Problem: Find rows where the year in a date column is a 

particular year
– Assuming date column contains month, day, and year, how to 

just search on year?
– Could find records between 01/01/xx and 12/31/xx

Ø Solution: Use SQL DatePart() function
Ø Example:

Ø Note: each DBMS will have its own date handling functions 
and function arguments
– This example is from Access. Could also use Year(HireDate)

Ø There are many other similar date manipulation functions, 
depending on DBMS
– Also will find numeric functions, system functions, and more

SELECT * FROM Employees
WHERE DatePart(“yyyy”,HireDate) = 2001
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Summarizing Data with SQL

Ø Typical Problems:
– Show how many employees we have
– Show how many employees make more than $40k
– Count how many employees have not been terminated
– Show the average, max, and min salary for all employees
– Show the total salary for all employees
– Show how many distinct salary levels there are

Ø Again, tempting to try with CF processing
– May be complicated, wasteful
– SQL functions may be more efficient, more powerful
– SQL functions for summarixing data are known as “aggregate 

functions”: Count, Min, Max, Avg, Sum
• Others include StdDev (standard deviation), Var (variance)
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Summarizing Data with SQL:  
Count(*) Function
Ø Problem: Show how many employees we have

– Yes, we can find all records and look at recordcount
• But if all we want it the count, this is wasteful!!!

Ø Solution: Use SQL Count(*) function
Ø Example:

Ø Possible Query Result Set Values:
Total Employees: 54

Ø Notes: 
– We must use a column alias in order to refer to that count 

within ColdFusion
– Returns only a single-record resultset (and does it FAST!)
– Not to be confused with SELECT * (which is SLOW!)

<CFQUERY DATASOURCE=“ProdPrsnl” NAME=“GetEmployees”>
SELECT Count(*) as RecCount
FROM Employees 

</CFQUERY>
<CFOUTPUT>

Total Employees: #GetEmployees.RecCount#<br>
</CFOUTPUT>
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Summarizing Data with SQL:  
Count(*) Function and Filter
Ø Problem: Show how many employees make more 

than $40k

Ø Solution: Use SQL Count(*) function and a filter
– Simple matter of adding a WHERE clause to 

indicate the desired criteria

Ø Example: <CFQUERY DATASOURCE=“ProdPrsnl” NAME=“GetEmployees”>
SELECT Count(*) as RecCount
FROM Employees
WHERE Salary > 40000

</CFQUERY>
<CFOUTPUT>
Num. employees making +40k: #GetEmployees.RecCount#<br>

</CFOUTPUT>
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Summarizing Data with SQL:  
Count(col) Function
Ø Problem: Count how many employees have been terminated

Ø Solution: Use SQL Count(column) function
– Instead of counting all records, count all having a value for a 

given column
– Assume terminated employees have a value in the  

TerminationDate column 

Ø Example:

Ø Note: doesn’t count records having null column value
– Will discuss nulls later
– In this case, the behavior is as expected. May not always be

<CFQUERY DATASOURCE=“ProdPrsnl” NAME=“GetEmployees”>
SELECT Count(TerminationDate) as RecCount
FROM Employees

</CFQUERY>
<CFOUTPUT>
Num. Employees terminated: #GetEmployees.RecCount#<br>

</CFOUTPUT>
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Summarizing Data with SQL:  
AVG/MAX/MIN Functions
Ø Problem: Show the average, max, and min salary for all 

employees
Ø Solution: Use SQL Avg(), Min(), or Max() functions

– Besides just counting records having any value for a given 
column, can also use these functions to summarize

Ø Example:

Ø Notes: 
– Like Count(column) function, these functions ignores columns 

with null values
• I.e., is average of records having a value for that column

– Also, can add a filter in order to compute summaries for 
records meeting some other criteria

<CFQUERY DATASOURCE=“ProdPrsnl” NAME=“GetEmployees”>
SELECT Avg(Salary) as AvgSal, Min(Salary) as MinSal, 

Max(Salary) as MaxSal
FROM Employees

</CFQUERY>
<CFOUTPUT>
Avg Sal: #GetEmployees.AvgSal#<br> ...

</CFOUTPUT>
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Summarizing Data with SQL:  
SUM Function
Ø Problem: Show the total salary for all employees

Ø Solution: Use SQL Sum() function
– Just as other functions compute Avg/Min/Max, can 

use Sum function to add up all values of column

Ø Example:

Ø Notes: 
– Can also perform mathematical computation on the 

column and sum that:
SELECT SUM(Salary * 1.20)

– Or perform computation between two or more 
columns and sum that, as in:
SELECT SUM(Salary*RaisePct)

SELECT Sum(Salary) as SumSal
FROM Employees
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Summarizing Data with SQL:  
Using DISTINCT with Functions
Ø Problem: Show how many distinct salary levels there are

Ø Solution: Use DISTINCT keyword with functions
– Rather than perform given function against all values of the 

given column in all records, can performs it against only the 
unique values that exist

Ø Example:

Ø Notes:
– Note that this will produce just one number: the number of 

distinct salary values that exist
• To produce instead a count of employees at each salary level, 

need to learn about SQL GROUP BY clause (coming next)

– Can also use AVG (average of distinct values rather than of 
all values). MIN and MAX would return same result either way

SELECT Count(DISTINCT Salary) as NumDistinctSals
FROM Employees
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Summarizing Data with SQL:  
Using DISTINCT with Functions
Ø Notes:

– Note also, there’s an opposing ALL keyword that 
can be used, instead of DISTINCT; performs 
aggregation against all values 

• This is the default and doesn’t need to be specified
– MS Access does not support this use of DISTINCT 

(or ALL) within aggregate functions
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Grouping Data with SQL

Ø Typical Problems:
– Show those counts, averages, or totals by 

department
– Show which departments have count/avg/total 

meets some criteria

Ø SQL provides a GROUP BY clause that can be 
used to create a list of unique values for a column
– Difference from DISTINCT is that it also “rolls up” 

the rows 
• aggregates some computation over all the records 

having that unique value
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Grouping Data with SQL

Ø Assume the employees table has a Dept column

Ø Example: 

Ø Note: this simple example creates a result no 
different than SELECT DISTINCT Dept
– You would not typically use this statement, because 

you’re also asking the DB to “roll up” rows having 
the same value of Dept, but are aggregating nothing

– Difference comes when combined with the 
previously presented aggregate functions, which 
then aggregate the data BY the unique “grouped” 
column values 

SELECT Dept FROM Employees
GROUP BY Dept
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Grouping Data with SQL:  Using 
GROUP BY with Count Function
Ø Problem: Show count of employees by department
Ø Solution: Use GROUP BY with COUNT(*) function
Ø Example:

Ø Possible Query Result Set Values:

Ø Notes:
– In example, first row in resultset represents records with null 

value for Dept column
– Order of rows is random. Could add ORDER BY Dept

• If present, must be specified AFTER the GROUP BY

SELECT Dept, Count(*) as CountEmp
FROM Employees
GROUP BY Dept

33Engineering

15Sales

4

7Marketing
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Grouping Data with SQL:  Using 
GROUP BY with Avg Function
Ø Problem: Show average salary by department

Ø Solution: Use GROUP BY with Avg(column) function
– Aggregate on a column other than that being grouped

Ø Example:

Ø Possible Query Result Set Values:

Ø Notes:
– Could use Min/Max/Count(column) too

SELECT Dept, Avg(Salary) as AvgSalary 
FROM Employees 
GROUP BY Dept

75500Engineering

83276Sales

45687

55000Marketing



15

our practice makes you perfect SM www.systemanage.com

Grouping Data with SQL:  Using 
GROUP BY with Functions
Ø More notes: 

– Columns to be SELECTed can only be aggregate 
functions and/or column named in GROUP BY

• Could not SELECT Lastname, Count(*) FROM Employees 
GROUP BY Dept

– Since LastName isn’t being GROUPed and isn’t 
an aggregate function itself

– Often a source of confusion, though it clearly 
wouldn’t make sense to show LastName here
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Grouping Data with SQL:  Using 
GROUP BY with Filter
Ø Problem: Show average salary by departments of 

employees who’ve completed grade 12

Ø Solution: Use GROUP BY with filter
– WHERE clause limits which records are to be GROUPed

Ø Example:

Ø More notes: 
– WHERE must occur after FROM, before GROUP

• Order of appearance: 
– FROM, WHERE, GROUP BY, ORDER BY

– To select records whose aggregated values meet some 
criteria, use HAVING clause

SELECT Dept, Avg(Salary) as AvgSalary 
FROM Employees 
WHERE GradeCompleted >= 12
GROUP BY Dept
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Grouping Data with SQL:  Using 
GROUP BY with HAVING
Ø Problem: Show departments whose employees have an 

average salary greater than $40,000

Ø Solution: Use GROUP BY with HAVING

Ø Example:

Ø Note:
– HAVING must occur after GROUP BY, before ORDER BY
– Order of appearance: 

• FROM, WHERE, GROUP BY, HAVING, ORDER BY

– Expression in HAVING can’t refer to alias from SELECT 
clause

• In example above, couldn’t use HAVING AvgSalary > 40000

SELECT Dept, Avg(Salary) as AvgSalary 
FROM Employees 
GROUP BY Dept
HAVING Avg(Salary) > 40000
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Handling Nulls

Ø About Nulls
– Columns that have no value are considered NULL 

• Null is not the same as a space or 0 or empty string 
(““). It’s no value at all

– A column can be defined to not allow nulls
– Can select which columns are or aren’t null with IS 

NULL or IS NOT NULL in WHERE clause
– When a column with a null value is selected and 

referred to the ColdFusion variable for the column, it 
will appear as an empty string

Ø Typical Problems:
– Show employees who have not been terminated
– Count how many employees do not live in NYC
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Handling Nulls: Searching for 
Nulls
Ø Problem: Show employees who have not been 

terminated
– Assume TerminationDate is null if not yet terminated

Ø Solution: Use IS NULL in WHERE clause

Ø Example: SELECT * 
FROM Employees 
WHERE TerminationDate IS NULL
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Handling Nulls: Negated 
Searching And Impact of Nulls
Ø Problem: Count how many employees do not live in NYC

– Be careful selecting records that don’t have some given value
– Tempting to use: 

Select count(*) 
FROM Employees 
WHERE City <> ‘New York’

– Problem is it doesn’t find records that don’t have a value for 
city

• Consider 200 records: 10 in New York, 5 are null
• Is answer 185 or 190? Depends on if you think nulls count

– City <> ‘New York’ ignores records with null values (null is 
neither equal to nor not equal to “new york”

Ø Solution: May want to add “OR column IS NULL”
Ø Example: SELECT Count(*) 

FROM Employees 
WHERE CITY <> ‘New York’
OR CITY IS NULL



18

our practice makes you perfect SM www.systemanage.com

Handling Long Text

Ø See Long Text Retrieval Settings for a given ODBC
datasource in CF Administrator
– Hidden under “CF Settings” button
– Can enable retrieval of very long text fields
– Enabling the option will hamper query performance

Ø May want to consider creating multiple 
datasources for same database
– one for when retrieving such columns
– one for when not  doing so

Ø Place long text fields last in list of columns being 
SELECTed
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Understanding Relational 
Database Design

Ø Relational Databases are comprised of several tables, each 
storing data about a particular aspect of the subject being 
described

Ø Goals are:
– store only related data in a single table
– don’t repeat data (don’t store it in more than one place)
– ensure integrity of data cross-referenced between tables

Ø Can be challenging to cross-reference that data

Personnel

Departments

Offices

Employees
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Understanding Foreign Keys

Ø Recall previous examples of GROUPing on Dept column
– Assumed that Employees table had DEPT column holding 

string values for department name

– Problems with this include:
• We’re storing the same string multiple times on many records
• If a mistake is made entering a given value, that record will no

longer be found in searches on value (see EmpID 4)

Engineering12-01-00Cindy2

Sales06-04-98Bob1

4

3

EmpID

Employees

Enginering05-30-99Beth

Sales01-01-01John

DeptHireDateName
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Understanding Foreign Keys

Ø More appropriate solution:
– Have Department table with just a list of each valid Dept and 

a unique DeptID (that table’s primary key)
– Then in Employees table, simply store that DeptID to indicate 

an employee’s department

• This DeptID in the Employees table is called a Foreign Key
– Since it holds a value that comes from the primary key of 

another table
– This is the fundamental aspect of a “relational” design

212-01-00Cindy2

106-04-98Bob1

4

3

EmpID

Employees

205-30-99Beth

101-01-01John

DeptIDHireDateName

Engineering2
Sales1
DeptDeptID

Departments
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Cross-Referencing Tables 
(Joins)
Ø Typical Problems:

– Show each employee and their department
– Show all employees and their department, even if not 

assigned to one
– Show each employee and their manager

Ø May be tempting for beginners to loop through resultset of 
one query (departments) and search for related records 
(employees for each dept)
– Bad! Bad! Bad!
– Correct solution is to instead JOIN the tables together
– There are several kinds of joins, each serving different 

purposes
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Understanding Joins

Ø To retrieve data from multiple tables, simply list both tables 
in FROM clause, such as:

– Note that if columns of the same name existed in each table, 
we’d need to prefix the table name to the column

Ø Only problem is that this selects all combinations of the 
values in the two columns
– In our example table, would create 8 rows in result

• 4 employees times 2 departments

– Not really what we likely wanted
• Called a cartesian product or a cross join EngineeringJohn

SalesJohn

SalesBeth

SalesCindy

EngineeringBob

EngineeringCindy

EngineeringBeth

SalesBob

SELECT Name, Dept
FROM Employees, Departments
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Inner Joins

Ø Problem: Show each employee and their department

Ø Solution: Perform Inner Join of the two tables
– indicate columns in each table that share common value. SQL 

automatically matches them
• Typically, where one table’s foreign key maps to its 

corresponding primary key in a related table

Ø Example:

Ø Correct Result:

Ø Note: the datatype of the columns being joined must match

SELECT Name, Dept
FROM Employees, Departments
WHERE Employees.DeptID = Departments.DeptID

SalesJohn

EngineeringBeth

EngineeringCindy

SalesBob
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Join via WHERE vs JOIN clause

Ø ANSI SQL standard (and most databases) supports an 
alternative means of indicating joins
– Rather than indicate joined columns in WHERE clause

• Use them with JOIN keyword on FROM clause

Ø Example:

Ø Notes: 
– If INNER keyword is not specified, INNER may be assumed

• Not true in MS Access
– Can join more than two tables with additional join clauses (of 

either format)
• Any limit will be set by DBMS
• Practical limit is that performance suffers with too many joins in a 

single SELECT

SELECT Name, Dept
FROM Employees INNER JOIN Departments
ON Employees.DeptID = Departments.DeptID
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Outer Joins

Ø With inner join, if value of join columns don’t match, records 
will not be retrieved 
– Unexpected problems can occur when foreign key is null

Ø Assume we had at least one employee with no department 
indicated (null value for DeptID)

– With inner join, his record will not be displayed at all
• he has no DeptID to match on DeptIDs in Departments table

– Could be a real problem if expecting SELECT to show all 
employees!

11-22-00Bill5

EmpID
Employees

DeptIDHireDateName
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Outer Joins

Ø Problem: Show all employees and their department, even if 
not assigned to one

Ø Solution: Perform Outer Join of the two tables
Ø Example:

Ø Possible Query Result Set Values:

Notes: 
– This example indicated LEFT OUTER JOIN: there are 2 other 

types
• LEFT join means retrieve all rows from table on left of JOIN even 

if they don’t have match for join column in right table
– Creates null values in join columns that did not match

SELECT Name, Dept
FROM Employees LEFT OUTER JOIN Departments
ON Employees.DeptID = Departments.DeptID

EngineeringBeth

SalesJohn

Bill

EngineeringCindy

SalesBob
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Outer Joins (cont.)

Ø WHERE clause syntax for LEFT join:
WHERE ON Employees.DeptID *= Departments.DeptID

– Syntax not supported in MS Access
Ø Two other kinds of Outer joins:

– RIGHT OUTER JOIN retrieves all rows from table on right
• In current example, that would be useful if we had a row in 

Departments not pointed to by an employee

• A RIGHT join would then show a row in the resultset for 
Accounting (with name being null)

– Even though no employees had that DeptID
• WHERE clause syntax for LEFT join (where supported):

WHERE ON Employees.DeptID =* Departments.DeptID

Accounting5

DeptDeptID

Departments
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Outer Joins (cont.)

Ø Second kind of Outer join
– A FULL OUTER JOIN (or FULL JOIN) retrieves 

rows from both tables even if join values don’t match
• In current example, would show both:

– a row for Bill with no department and 
– A row with no employee name for Accounting

– Not supported in MS Access
– No equivalent WHERE clause syntax at all
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Self-Joins

Ø Is possible to join a table to itself

Ø Assume Employees table has column for 
ManagerID, to indicate each employees manager
– Values for that ManagerID column simply point to 

the EmpID for their manager

– How to show who works for who?
10-10-97Bill5

5

1

4

5

ManagerID

212-01-00Cindy2

106-04-98Bob1

4

3

EmpID

Employees

205-30-99Beth

101-01-01John

DeptIDHireDateName
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Self-Joins

Ø Problem:  Show each employee and their manager
Ø Solution: Use self-join (just join table to itself using alias)

– There is no SELF keyword
Ø Example:

Ø Possible Query Result Set Values:

Ø Note: Why isn’t Bill listed? 
– This was an INNER join. He has null ManagerID

• We can see from others that he’s the boss and has no boss
• To show him in table, would need OUTER join

SELECT Employees.Name, Employees.Dept, Mgr.Name
FROM Employees INNER JOIN Employees as Mgr
ON Employees.ManagerID = Mgr.EmpID

Bill

Bob

Beth

Bill

EngineeringBeth

SalesJohn

EngineeringCindy

SalesBob
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Some Other Tidbits for You to 
Investigate
Ø Nesting multiple joins

Ø TOP, TOP n PERCENT options on SELECT

Ø UNIONs

Ø Nested Subquery

Ø EXISTS predicate

Ø Using NULL in INSERT, UPDATE

our practice makes you perfect SM www.systemanage.com

Where to Learn More

Ø Version 5 CF manuals: 
– Installing and Configuring ColdFusion Server
– Developing ColdFusion Applications
– CFML Reference

Ø Books by Ben Forta:
– Teach Yourself SQL in 10 Minutes
– Certified ColdFusion Developer Study Guide
– ColdFusion Web Application Construction Kit
– Advanced ColdFusion Development

Ø Many other CF and SQL books available, including
– Practical SQL Handbook (new edition available)
– SQL For Smarties (any Joe Celko book)
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Subjects of Next Seminar

Ø Database 3: Improving Database Processing
– DB Performance & Scalability 

• Query Caching, BlockFactor, Indexes

– DB Reliability 
• Constraints, Transactions, Bind Parameters, Triggers

– DB Extensibility and Maintainability 
• Stored Procedures
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Contact Information

Contact for follow-up issues
– Email: carehart@systemanage.com
– Phone: (301) 604-8399
– Web: www.systemanage.com

Also available for
– Training (custom or pre-written)

• CF, DB, Jrun/J2EE, Javascript, wireless, and more
– Consulting (very short-term engagements)

• best practices, architecture, setup, troubleshooting, etc.

– Developer Group Mentoring, and more
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Q&A

?


