
1

our practice makes you perfect SM www.systemanage.com

Database 3:
Improving Database
Processing
Charlie Arehart
Founder/CTO Systemanage
carehart@systemanage.com

SysteManage: our practice makes you perfect SM

our practice makes you perfect SM www.systemanage.com

Agenda

Ø Eight Measures of Architectural Quality
Ø DB Performance and Scalability:

– Query Caching
– BlockFactor
– Indexes

Ø DB Reliability:
– Constraints
– Triggers
– Transaction Management
– Bind Parameters

Ø DB Extensibility and Maintainability:
– Stored Procedures

Ø The Other Measures of Quality
Ø Where to Learn More and Q&A

2

our practice makes you perfect SM www.systemanage.com

Part 3 of 3

Ø This seminar is part 3 of 3 presented today
– Previous two were in conference “beginner” track

Ø Part 3 is in “Advanced” track
– Won’t lose those who’ve made it this far
– May discuss things that advanced developers have

already heard (more than once)
• May hear it in a different way today
• Or leave thinking about it differently than before
• May simply trigger your putting them into effect

Ø More than just “how to”
– Focus as much on why, architectural perspective
– 50% is CF-specific, rest meaningful to other

developers

our practice makes you perfect SM www.systemanage.com

Database Server

Databases & Overall
Architecture

Ø Database processing is just part of your overall
system and information architecture including:
– Web server, CF server, DB server
– As well as DB design, SQL code, CF code

Ø Should evaluate entire system in terms of quality

Personnel

Orders

Products

CF Server

Web Server

3

our practice makes you perfect SM www.systemanage.com

Eight Measures of Architectural
Quality
Ø Sun Microsystems defines eight measures of

architectural quality
– Offered in regard to Java Enterprise (J2EE) platform
– Apply just as well to considering CF/DB architecture

– Create a backdrop considering various techniques
to improving database processing

ManageabilityExtensibility
SecurityReliability
AvailabilityScalability
MaintainabilityPerformance

our practice makes you perfect SM www.systemanage.com

Performance & Scalability

Ø Performance:
– A measure of the effectiveness of your application

(and database design and server platform), in terms
of response time, transaction throughput, and/or
resource usage

– Always involves tradeoffs of cost/benefit

Ø Scalability:
– Ability to support the required quality of service as

load (number of users, volume of data) increases
– Today’s small application (or your tests) may not

reflect future

4

our practice makes you perfect SM www.systemanage.com

Reliability, Extensibility &
Maintainability
Ø Reliability:

– Assurance of the integrity and consistency of the application
and all its transactions

– May suffer with increased load
• But ensuring reliability may negatively effect scalability

Ø Extensibility
– Ability to add/modify additional functionality without impacting

existing functionality
– Given the high effort involved in maintenance, this is more

important than many recognize

Ø Maintainability
– Ability to correct flaws in the existing functionality without

impacting other components/systems
– Includes modularity, documentation

our practice makes you perfect SM www.systemanage.com

Other Measures of Architecture

Ø Not really the focus of topics in this seminar
– Some tips at conclusion

Ø Availability
– Assurance that a component/resource is always available
– Can be enabled with redundancy and failover

Ø Security
– Ability to ensure that the system has not been compromised
– By far the most difficult to address
– Involves protecting confidentiality, integrity, availability, more

Ø Manageability
– Ability to manage the system in order to ensure continued

health with respect to previous measures
– Involves both monitoring and ability to improve systemic

qualities dynamically without changing system

5

our practice makes you perfect SM www.systemanage.com

Addressing the Challenges

Ø One approach to scalability/performance concerns:
– Add more memory/processors

• Tends to have good impact on all parts of system with
little negative

Database Server

Personnel

Orders

Products

CF Server

Web Server

our practice makes you perfect SM www.systemanage.com

Addressing the Challenges

Ø One approach to scalability/performance concerns:
– Add more memory/processors

• Tends to have good impact on all parts of system with
little negative

Personnel

Orders

ColdFusion
ServerColdFusion

Server

Web Server

ColdFusion
Server

Web Server Personnel

Orders

Database Server

Personnel

Orders

Products

6

our practice makes you perfect SM www.systemanage.com

Clusters and Distributed
Servers

Ø Another solution:
– Distribute processing across multiple servers

• May be simply segregating CF Server and DB server
– Again, generally a very good idea

• May involve creating cluster for web server
– Tends to add complexity to design and

implementation

Personnel

Orders

ColdFusion
ServerColdFusion

Server

Web Server

ColdFusion
Server

Web Server Personnel

Orders

Database Server

Personnel

Orders

Products

our practice makes you perfect SM www.systemanage.com

Clusters and Distributed
Servers

Ø Another solution:
– Distribute processing across multiple servers

• May be simply segregating CF Server and DB server
– Again, generally a very good idea

• May involve creating cluster for web server
– Tends to add complexity to design and

implementation

Personnel

Orders

ColdFusion
Server

Web Server

ColdFusion
Server

Web Server

ColdFusion
Server

Web Server Personnel

Orders

Database Server

Personnel

Orders

Products

7

our practice makes you perfect SM www.systemanage.com

Improving Design &
Implementation
Ø May be able to improve performance/scalability

without new hardware
– Features in DB design, SQL, and CF can help
– Many are useful even in relatively small applications

• Should design for performance, keeping in mind
cost/benefit tradeoffs

Ø Design/implementation choices impact other facets
– Reliability, extensibility, maintainability, security

Ø Some features revolve around design of database
– Most simply involve more effective use of db

our practice makes you perfect SM www.systemanage.com

DB Processing: Key for CF App

Ø DB processing is single biggest bottleneck in most CF apps
– Sadly, many will blame CF itself
– Usually, the problems are preventable

Ø Typical things that can degrade quality of DB processing:
– Poor database and table design
– Use of non-relational tables
– Use of incorrect data types
– Poorly written SQL
– Lack of indexes
– Not using stored procedures, triggers
– Repeatedly requesting the same data
– And much more

Ø Previous talks have addressed some of these
– Today we’ll cover some of the rest, and more

8

our practice makes you perfect SM www.systemanage.com

DB Performance and Scalability
Solutions
Ø Some DB performance and scalability solutions:

– Query Caching
– BlockFactor
– Indexes

our practice makes you perfect SM www.systemanage.com

Repeatedly Requesting the
Same Data
Ø Many web apps suffer from unnecessarily

requesting the same data over and over
– Doesn’t really matter if DB is well-designed

Ø Examples include:
– Providing drop-down list of states on a reg. form

• When did we last add a new state?
– A company phone directory

• How often are employees added/removed?
– Reporting management information

• Does it need to be accurate to the second?
– Showing search results n-records at a time

• Search criteria doesn’t change for “next 10” records

9

our practice makes you perfect SM www.systemanage.com

Query Caching

Ø CF provides two means of caching query results for re-use
– Variable-based query caching

• Leverages ability to store any variable in server, application, or
session scope

• Since a query resultset is a variable, it can be scoped as such
• May surprise those who never thought of it

– Time-triggered query caching (a.k.a. “query result caching”)
• New attributes for CFQUERY to indicate that any code executing

that query should create/use cached copy for given timeframe

– Will show how to use each of these

Ø Also look into CFCACHE and CFSAVECONTENT tags
– These cache the entire CF page or page portions
– Not covered in this seminar but important to performance

our practice makes you perfect SM www.systemanage.com

Variable-based Query Caching

Ø ColdFusion offers 3 scopes for storing persistent
variables:
– Session scope

• Persists for the life of a single user’s session until
server is restarted or session times out

– Application scope
• Persists for all users of a given application until server

is restarted
– Server scope

• Persists for all users of entire CF server until server is
restarted

Ø I’ll have to presume for this class that you
understand setup and use of these

10

our practice makes you perfect SM www.systemanage.com

Variable-based Query Caching

Ø Just as we can assign variables to these scopes
– we can declare that a CFQUERY NAME value use a

persistent scope, as in:

– Now, this query result set is stored with all other application
variables

• Can be referred to by any code anywhere in this application
– meaning, under control of same CFAPPLICATION

<CFQUERY DATASOURCE=“ProdPrsnl” NAME=“application.GetStates”>
SELECT State, StateAbbrev
FROM States

</CFQUERY>

<SELECT NAME=“state”>
<CFOUTPUT QUERY=“application.GetStates”>

<OPTION VALUE=“#StateAbbrev#”>#State#
</CFOUTPUT>
</SELECT>

our practice makes you perfect SM www.systemanage.com

Avoid Recreating Cached
Resultset
Ø Once cached, query shouldn’t be executed again

– At least not until the data it reflects changes

Ø How to avoid executing query if already “cached”?
– Test if query already exists, with IsDefined()

Ø Now this query will be executed only once but be
available for the life of its indicated scope

<CFIF NOT IsDefined(“application.GetStates”)>
<CFQUERY DATASOURCE=“ProdPrsnl” NAME=“application.GetStates”>

SELECT State, StateAbbrev
FROM States

</CFQUERY>
</CFIF>

11

our practice makes you perfect SM www.systemanage.com

Where to Create/Update
Variable-based Cached Query?
ØWhere might it be sensible to put query creation

code to be cached for all app users?
– Application.cfm

ØWhen should the query be re-executed?
– Whenever its underlying database table changes

• In whatever template performs changes to data
• Only dilemma: if code outside your control updates

DB

Ø Consider use of session scope to hold a user’s
search results over many “next n” pages?
– Create/cache it on the search action page

our practice makes you perfect SM www.systemanage.com

Another Challenge: Locking
Issues
Ø Shared scope variables should be locked when written to

– Should probably instead code query as:

– Note use of “exclusive” type of lock
• Not wrapping query in lock because you should avoid holding

locks any longer than needed
– Why make lock wait for query to run?
– It should just be locked for however long it takes to assign

the result set to the persistent variable

<CFQUERY DATASOURCE=“ProdPrsnl” NAME=“GetStates”>
SELECT State, StateAbbrev
FROM States

</CFQUERY>
<CFLOCK SCOPE="APPLICATION" TYPE="EXCLUSIVE" TIMEOUT="5">

<CFSET application.GetStates= GetStates>
</CFLOCK>

12

our practice makes you perfect SM www.systemanage.com

Locking Issues (cont.)

Ø Should also lock when reading
– Could code CFOUTPUT loop as:

– Note use of “readonly” type of lock
– Note too that TIMEOUT attribute in each case has nothing to

do with how long this lock will take
• It’s how long this lock will wait for lock being held by others

– Could instead assign cached result to local variable within
lock (locking just that assignment) and loop over that

• Will likely release lock faster (for benefit of others updating
same-scoped variables)

• Comes at cost of creating local copy of resultset each time

<CFLOCK SCOPE="APPLICATION" TYPE=“READONLY" TIMEOUT="5">
<SELECT NAME=“state”>
<CFOUTPUT QUERY=“application.GetStates”>

<OPTION VALUE=“#StateAbbrev#”>#State#
</CFOUTPUT>

</SELECT>
</CFLOCK>

our practice makes you perfect SM www.systemanage.com

More Challenges

Ø More challenges of variable-based cached queries
– You’re responsible for managing cache (creating,

updating)
• To delete cache, delete variable

– <CFSET x = StructDelete(application,”GetEmployees”)>

– Be careful about creating too many
• They’re just stored in memory

– Large queries could take a lot of memory
• No way for admin to limit memory used

13

our practice makes you perfect SM www.systemanage.com

More Challenges

Ø More challenges of variable-based cached queries
– You’re relying on previous code to have created the cache,

such as application.cfm in one example
• Can look confusing to developers unfamiliar with this form of

caching
• And what if it didn’t exist? Hadn’t been run?

– Consider how CFPARAM creates a variable only if it doesn’t
exist

• Wouldn’t it be nice if you could just do the query where you need
it?

– and if it hadn’t been cached, it would be?
– And, further, it would automatically re-cache itself at defined

intervals (after x minutes, or after certain date)

Ø Next alternative to query caching solves these problems

our practice makes you perfect SM www.systemanage.com

Time-triggered Query Caching:
CACHEDAFTER
Ø Referred to in “Certified CF Developer Study Guide” as

“Query Result Caching”

Ø Does not involve creating variables
– Instead, specify a caching attribute on CFQUERY

• CACHEDAFTER or CACHEDWITHIN

– Example:

– This would cache the result the first time the query is run after
specified date/time (and use the cache from then on)

• Meant to be used with fixed date/time, in the future
• Might be useful when you know data is updated at 10pm

<CFQUERY DATASOURCE=“ProdPrsnl” NAME=“GetSales”
CACHEDAFTER=“09-01-01 10:00 pm”>

SELECT * FROM
FROM SalesStats

</CFQUERY>

14

our practice makes you perfect SM www.systemanage.com

Time-triggered Query Caching:
CACHEDWITHIN
Ø CACHEDWITHIN works differently

– This would cache the result the first time the query is run and
reuse the cache each time query is executed

• until specified timespan has passed since it was first cached
• will re-cache it the next time it’s run after specified timespan
• Meant to be used with relative time span

– Can be specified in either days, hours, mins, secs
• Useful to cache for a specific amount of time from the first time

it’s cached
– CFML reference mistakenly indicates this should “define a

period of time from the present backwards”

<CFQUERY DATASOURCE=“ProdPrsnl” NAME=“GetEmployees”
CACHEDWITHIN=“#CreateTimeSpan(0,0,5,0)#”>

SELECT * FROM
FROM Employees

</CFQUERY>

our practice makes you perfect SM www.systemanage.com

Time-triggered Query Caching:
Issues
Ø Can observe if query was taken from cache

– If debugging is turned on, query time shows “cached
query”

• Note that CFQUERY.ExecutionTime variable does
NOT show this value

– Shows “0”, doesn’t always mean it was a cached
query

Ø Important difference from variable-based caching
– Query remains where it normally would appear
– No need to test existence, no shared variables

used, no need to worry about <CFLOCK>

15

our practice makes you perfect SM www.systemanage.com

Time-triggered Query Caching:
Dynamic Queries
Ø A single CFQUERY may generate multiple cached

results
– If SQL is built dynamically, each unique SQL

statement is cached separately
• Consider search action page driven by form fields

– Same CFQUERY with different resulting SQL will
create separate cached result

– Pro
• Means more potential to benefit from cache

– Con
• Means lots of cached results could be created

our practice makes you perfect SM www.systemanage.com

Time-triggered Query Caching:
Admin Settings
Ø Time-triggered caching is governable by admin

settings
– Can restrict total number of cached queries allowed
– Limit the maximum number of cached queries on

the server to xxx queries
• When the limit is exceeded, oldest query is dropped

and replaced
• Defaults to 100 on installation of CF

– Can disable this sort of caching by setting to 0

16

our practice makes you perfect SM www.systemanage.com

Time-triggered Query Caching:
Sharing Cached Results
Ø Mentioned previously that unique SQL in same

query will result in different cached results
– Conversely, and perhaps unexpectedly to many,

cached result for given SQL can be reused by
another CFQUERY

• To reuse another query’s cached result, query must
have identical SQL and DATASOURCE

– And, if specified, identical DBTYPE and Login info
• Doesn’t need to have same query NAME
• Of course, doesn’t need to be in same template

– Nor even in same application

our practice makes you perfect SM www.systemanage.com

More About CachedAfter

Ø CF docs are very sparse about CACHEDAFTER
– Both the docs and the Certification Study Guide say

it supports only a date
• Will support a date and time

– Can specify date as any valid CF date, then add
time

» such as “09/01/01 10:00pm” or “09-01-2001
22:00”

• To cache each day as of 10pm, use
– CACHEDAFTER="#dateformat(now())# 22:00"

• Can’t, however, just specify a time

17

our practice makes you perfect SM www.systemanage.com

Another Performance Factor:
BlockFactor
Ø BLOCKFACTOR gets a lot of press by some as important

performance factor
– May not bring value for most
– Also easily misunderstood

Ø When CF and database communicate to create result set,
may transer only one record at a time
– Applies to some DB drivers

• ODBC, Oracle according to docs
– BLOCKFACTOR is an attribute on CFQUERY

• Allows specifying a number of records to transfer at a time
• Does NOT control HOW MANY records are retrieved

– If not supported by DB driver, won’t cause error
• but could degrade performance

– If supported but set too large, could degrade performance
– Many feel it’s best to not set at all

our practice makes you perfect SM www.systemanage.com

About DB Column Indexes

Ø When column in table is searched, does the DBMS look at
each record in entire table, one at a time?
– Yes, if the column is not indexed
– Think of index as similar to a book’s index

• Just as we can find info quickly, so can DBMS
• Can have dramatic impact on performance of queries

– In small tables, lack of index may not be noticeable
• Then again, with more users doing more queries, could become

a problem

– Whether a column is indexed is optional
• Except that primary key is always indexed
• Should consider adding index to columns frequently searched

– May also improve sorting by a given column

– Beware: indexing a column isn’t always a good idea

18

our practice makes you perfect SM www.systemanage.com

Indexing Cautions

Ø Before rushing off to create indexes on too many
columns, consider a few cautions:
– Each index requires time to be maintained during

record insert/udpate operations
– Not all data is suitable for indexing

• Depending on indexing technique used by DBMS,
data without many unique values may not benefit

– State may not be good index while lastname is
– Indexed data does add to storage requirement for

DB

our practice makes you perfect SM www.systemanage.com

Creating/Adding Indexes

Ø To add an index to a table for a given column

– Indexname must be unique within given table
– Can create index before or after populating table

with data

Ø CF and even SQL coding isn’t typically changed by
adding indexes
– Just see improved query performance (at tradeoff of

aforementioned cautions)

CREATE INDEX indexname
ON tablename (columnname)

19

our practice makes you perfect SM www.systemanage.com

DB Reliability Solutions

Ø Some DB reliability solutions:
– Constraints
– Triggers
– Transaction Management
– Bind Parameters

our practice makes you perfect SM www.systemanage.com

About DB Column Constraints

Ø In Database 2 seminar, we learned about inter-related tables
and how to create JOINs between them
– Learned that, in this example, values of Employees.DeptID

reflect those in Departments.DeptID
• Can be used to lookup Dept name by way of joining them

– What ensures that the only values stored in
Employees.DeptID come from Departments.DeptID?

• Many developers don’t take steps to ensure this

212-01-00Cindy2

106-04-98Bob1

4

3

EmpID

Employees

205-30-99Beth

101-01-01John

DeptIDHireDateName

Engineering2
Sales1
DeptDeptID

Departments

20

our practice makes you perfect SM www.systemanage.com

Problems Managing Related
Table Values
Ø Others take responsibility to manage it themselves

– Trying to maintain this form of integrity is
challenging

– Need to do it everywhere data may be updated
– Also need to do it for updates/deletes
– Take effort to code, then execute, such checks

Ø Far better to let DBMS manage this itself

our practice makes you perfect SM www.systemanage.com

Creating/Adding Constraints

Ø Can create constraints for and between such
related table columns

– With this in place, an attempt to insert invalid value
for DeptID in Employees (a value not in
Departments.DeptID column), DB will throw error

– Can catch this error in CF with CFTRY
• Surround CFQUERY doing insert/udpate

ALTER TABLE Employees
ADD CONSTRAINT FK_DeptID

FOREIGN KEY (DeptID)
REFERENCES Departments (DeptID)

21

our practice makes you perfect SM www.systemanage.com

About Unique Constraints

Ø Similar dilemma arises when you want unique
values for a given column
– May want to prevent multiple records with same

email address
• Learned in previous seminar that primary key values

are guaranteed to be unique
• But what if column (like email) is not the primary key?

– Again, could try to manage this yourself
• Doing test before doing insert/update to ensure email

address value doesn’t already exist
– Or could have DBMS manage it, with unique

constraint
• May be created with CREATE UNIQUE INDEX or

with another kind of CONSTRAINT

our practice makes you perfect SM www.systemanage.com

About Check Constraints

Ø Still another reliability option is that some
databases allow creation of Check Constraints
– These are defined for a given column to ensure

values meet some defined criteria
– Examples include:

• minimum/maximum values
• range of values
• List of possible values

22

our practice makes you perfect SM www.systemanage.com

Visually Defining Indexes,
Constraints
Ø SQL statements will work for nearly all DBMS’s

– Many DBMS’s offer visual interface for managing
these

• MS Access “Design Table” and “Tools>Relationships”
features

• SQL Server Enterprise Manager
• And more

– Again, be aware that in many instances, the defaults
are to not define indexes, constraints

• If you’d like to use them, you may need to add them

our practice makes you perfect SM www.systemanage.com

Ensuring Further Data
Reliability
ØWe know that constraints can ensure that data

meets certain criteria during insert/update

Ø May need to ensure further integrity
– May want to convert data to uppercase during

insert/update
– May need to write data to another table on

insert/update
• keeping accountbalance column in account table

updated for each deposit/withdrawal tracked in
transaction table

– May need to check data in another table before
allowing insert/update

23

our practice makes you perfect SM www.systemanage.com

Triggers

Ø Some DBMS’s allow creation of triggers to perform these
sort of integrity checks and cross-table update
– Specified in form of SQL statements
– Stored in database, associated with given table
– Typically can define separate triggers to act upon insert,

update, and/or delete against that table
– Syntax will differ between DBMS’s. An example:

– When performing similar actions, constraints typically execute
more quickly than triggers (use them instead)

CREATE TRIGGER triggername
ON tablename
FOR INSERT|UPDATE|DELETE
AS
UPDATE tablename SET columnname=UPPER(columnname)
WHERE tablename.columnname = INSERTED.columnname

our practice makes you perfect SM www.systemanage.com

Transaction Management

Ø Multiple users can (and generally do) update data
in databases at the same time
– Transaction processing prevents them updating the

exact same data at the same time
– Also allows a group of related updates to be

packaged such that if they don’t all succeed, none
will succeed

Ø Generally controlled by the DBMS for us
– We can influence it from within CF by way of the

CFTRANSACTION tag

Ø See Chapter 19 of Certification Study Guide for
more details and code samples

24

our practice makes you perfect SM www.systemanage.com

Grouping Updates

ØWhen multiple updates must take place, otherwise
none should take place, use CFTRANSACTION

Ø This simplest and oldest form simply ensures that
if the first update fails, the second will as well
– Called backing out or “rolling back” the first update
– Up to the database to handle the rollback

• More advanced DBMS will handle rollback even after
recovering from crash of DB server that may have
caused transaction to fail in the first place

<CFTRANSACTION>
<CFQUERY ...>

UPDATE Checking SET Balance=Balance-100
WHERE AccountID = 1234

</CFQUERY>
<CFQUERY ...>

UPDATE Savings SET Balance=Balance+100
WHERE AccountID = 1234

</CFQUERY>
</CFTRANSACTION>

our practice makes you perfect SM www.systemanage.com

Isolation Levels

Ø When performing a group of transactions, need to be careful
about other users reading the data we update, and vice-
versa
– Databases generally define up to 4 isolation levels that can

influence these sort of cross-user locks, from
• Serializable (default)

– Can indicate that no reads/updates by others take place
during our update

• Through Repeatable_Read and Read_Committed
– Not supported by all DBMS’s

• Read_Uncommitted
– Or can indicate that we don’t care if others are

reading/updating

Ø We can specify a desired isolation level with
CFTRANSACTION ISOLATION attribute

25

our practice makes you perfect SM www.systemanage.com

Programmable
Commit/Rollback
Ø Mentioned that CFTRANSACTION would rollback all updates

if any failed
– Didn’t mention, but COMMIT takes place at end of transaction

• Commit tells DBMS to consider update finished
– CFQUERY updates outside CFTRANSACTION also do

COMMIT at end of CFQUERY

– Release 4.5 added ability to perform BACKOUT (and
COMMIT) programatically within transaction

• <CFTRANSACTION ACTION=“Backout|Commit”/>
– This tag is designed to be used within other

CFTRANSACTION tag
» Doesn’t allow embedded tags of its own, but needs to

be closed to avoid confusion with surrounding
CFTRANSACTION

» Could use closing </CFTRANSACTION> tag or just
closing slash at end of tag, as above

our practice makes you perfect SM www.systemanage.com

Ø ColdFusion is a loosely typed language
– Numbers considered string until used for math

Ø Databases are strongly typed
– Column expecting numbers will want numbers
– But CF will be passing a string that looks like number

• Database can do conversion to fix that
• But we can help the database to know the datatype
• Can help performance by specifying bind parameters

Using Bind Parameters

<CFQUERY ...>
SELECT * FROM EMPLOYEES
WHERE EmpID =

<CFQUERYPARAM CFSQLTYPE="CF_SQL_INTEGER" VALUE="#url.empid#">
</CFQUERY>

26

our practice makes you perfect SM www.systemanage.com

Bind Parameter for Reliability

ØWhen passing form or URL variables on some SQL
statements (with some DB drivers)
– User can pass strings to add unexpected SQL
– Bind parameters can stop that

• If expecting to bind numeric data and user passes
text (including SQL statements), bind will strip them

our practice makes you perfect SM www.systemanage.com

DB Extensibility Solutions

Ø One DB extensibility and maintainability solution:
– Stored Procedures

27

our practice makes you perfect SM www.systemanage.com

About Stored Procedures

Ø We typically specify SQL statements within CFQUERY tags
within our CF templates
– What if multiple templates would execute same SQL?
– While we could use CFINCLUDE to re-use this code, there

are options in most DBMS’s to store that code in the DBMS
– Then would call upon it much like we call a custom tag

• But instead of executing CF code, it just executes SQL

– Each DBMS has its own language for the SQL to be used for
such stored procedures, for instance:

• Oracle: PL/SQL
• SQL Server: T/SQL

our practice makes you perfect SM www.systemanage.com

Creating Stored Procedures

Ø Other benefits:
– Stored procedure typically compiled and stored in DBMS
– Parameters can be passed to procedure to be used in SQL

execution
– Can create and use variables, pass data among statements,

and perform conditional processing within the SQL
– Can execute multiple statements in one procedure
– Stored procedure may be able to return multiple record sets
– Example might be:

– Can create Stored Procedures using CFQUERY
• More typically created in DBMS, managed by DB Admin

CREATE PROCEDURE procedurename in/outparms
ON tablename
AS
SQL statements

28

our practice makes you perfect SM www.systemanage.com

Executing Stored Procedures

Ø Once stored in a DBMS, we can execute the stored
procedure by calling upon it, in either:
– CFQUERY
– CFSTOREDPROC

Ø Procedure executes in the DBMS (just as if we’d passed the
SQL)

Ø Returns one or more result sets to process (just as with
normal CFQUERY)

Ø Working with SPs in Oracle has complications
– See Macromedia Knowledge Base articles

Ø Though MS Access doesn’t have stored procedures, there
are ways to fake it
– use Access “parameter queries” feature
– See my CFDJ article from Oct 99: “Stored Procedures in

Access? Yes Indeed”

our practice makes you perfect SM www.systemanage.com

Other Measures of Architecture

Ø Availability
– Assurance that a component/resource is always

available
– Can be enabled with redundancy and failover

• Some may know that CF Servers can be clustered
– From DB standpoint, no built-in CF features

• On simple level, could use CFTRY to catch failures
and attempt query/update of alternate DB

• On larger level, enable backup/restore
– Often ignored by CF developers

• Replication may play a part
– Some DBMS implementations better than others

29

our practice makes you perfect SM www.systemanage.com

Other Measures of Architecture

Ø Security
– Ability to ensure that the system has not been

compromised
– By far the most difficult to address
– Involves protecting confidentiality, integrity,

availability, more
– Will be highly influenced by DBMS, configuration,

perhaps programming

our practice makes you perfect SM www.systemanage.com

Other Measures of Architecture

Ø Manageability
– Ability to manage the system in order to ensure

continued health with respect to performance,
scalability, reliability, availability and security

– Involves both monitoring and ability to improve
systemic qualities dynamically without changing
system

• ColdFusion 5 offers monitoring features to observe
system, servers, and even successful execution of
probing templates

• Most DBMS’s and operating systems also offer
monitoring tools

30

our practice makes you perfect SM www.systemanage.com

Some Other Tidbits for You to
Investigate
Ø Query of Queries

Ø VIEWs

Ø DB Security management

our practice makes you perfect SM www.systemanage.com

Where to Learn More

Ø Version 5 CF manuals:
– Installing and Configuring ColdFusion Server
– Developing ColdFusion Applications
– CFML Reference

Ø Books by Ben Forta:
– Teach Yourself SQL in 10 Minutes
– Certified ColdFusion Developer Study Guide
– ColdFusion Web Application Construction Kit
– Advanced ColdFusion Development

Ø Many other CF and SQL books available, including
– Practical SQL Handbook (new edition available)
– SQL For Smarties (any Joe Celko book)

31

our practice makes you perfect SM www.systemanage.com

Contact Information

Contact for follow-up issues
– Email: carehart@systemanage.com
– Phone: (301) 604-8399
– Web: www.systemanage.com

Also available for
– Training (custom or pre-written)

• CF, DB, Jrun/J2EE, Javascript, wireless, and more
– Consulting (very short-term engagements)

• best practices, architecture, setup, troubleshooting, etc.

– Developer Group Mentoring, and more

our practice makes you perfect SM www.systemanage.com

Q&A

?

