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Part 3 of 3

Ø This seminar is part 3 of 3 presented today
– Previous two were in conference “beginner” track

Ø Part 3 is in “Advanced” track
– Won’t lose those who’ve made it this far
– May discuss things that advanced developers have 

already heard (more than once)
• May hear it in a different way today
• Or leave thinking about it differently than before
• May simply trigger your putting them into effect

Ø More than just “how to”
– Focus as much on why, architectural perspective
– 50% is CF-specific, rest meaningful to other 

developers
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Database Server

Databases & Overall 
Architecture

Ø Database processing is just part of your overall 
system and information architecture including:
– Web server, CF server, DB server
– As well as DB design, SQL code, CF code

Ø Should evaluate entire system in terms of quality

Personnel

Orders

Products

CF Server

Web Server
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Eight Measures of Architectural 
Quality
Ø Sun Microsystems defines eight measures of 

architectural quality
– Offered in regard to Java Enterprise (J2EE) platform
– Apply just as well to considering CF/DB architecture

– Create a backdrop considering various techniques 
to improving database processing

ManageabilityExtensibility
SecurityReliability
AvailabilityScalability
MaintainabilityPerformance
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Performance & Scalability

Ø Performance: 
– A measure of the effectiveness of your application 

(and database design and server platform), in terms 
of response time, transaction throughput, and/or 
resource usage

– Always involves tradeoffs of cost/benefit

Ø Scalability: 
– Ability to support the required quality of service as 

load (number of users, volume of data) increases
– Today’s small application (or your tests) may not 

reflect future
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Reliability, Extensibility & 
Maintainability
Ø Reliability:

– Assurance of the integrity and consistency of the application 
and all its transactions

– May suffer with increased load
• But ensuring reliability may negatively effect scalability

Ø Extensibility
– Ability to add/modify additional functionality without impacting

existing functionality
– Given the high effort involved in maintenance, this is more 

important than many recognize

Ø Maintainability
– Ability to correct flaws in the existing functionality without 

impacting other components/systems
– Includes modularity, documentation

our practice makes you perfect SM www.systemanage.com

Other Measures of Architecture

Ø Not really the focus of topics in this seminar
– Some tips at conclusion

Ø Availability
– Assurance that a component/resource is always available
– Can be enabled with redundancy and failover

Ø Security
– Ability to ensure that the system has not been compromised
– By far the most difficult to address
– Involves protecting confidentiality, integrity, availability, more

Ø Manageability
– Ability to manage the system in order to ensure continued 

health with respect to previous measures
– Involves both monitoring and ability to improve systemic 

qualities dynamically without changing system
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Addressing the Challenges

Ø One approach to scalability/performance concerns:
– Add more memory/processors

• Tends to have good impact on all parts of system with 
little negative

Database Server

Personnel

Orders

Products

CF Server

Web Server
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Clusters and Distributed 
Servers

Ø Another solution:
– Distribute processing across multiple servers

• May be simply segregating CF Server and DB server
– Again, generally a very good idea

• May involve creating cluster for web server
– Tends to add complexity to design and 

implementation

Personnel
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Improving Design & 
Implementation
Ø May be able to improve performance/scalability 

without new hardware
– Features in DB design, SQL, and CF can help
– Many are useful even in relatively small applications

• Should design for performance, keeping in mind 
cost/benefit tradeoffs

Ø Design/implementation choices impact other facets
– Reliability, extensibility, maintainability, security

Ø Some features revolve around design of database
– Most simply involve more effective use of db
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DB Processing: Key for CF App

Ø DB processing is single biggest bottleneck in most CF apps
– Sadly, many will blame CF itself
– Usually, the problems are preventable

Ø Typical things that can degrade quality of DB processing:
– Poor database and table design
– Use of non-relational tables
– Use of incorrect data types
– Poorly written SQL
– Lack of indexes
– Not using stored procedures, triggers
– Repeatedly requesting the same data
– And much more

Ø Previous talks have addressed some of these
– Today we’ll cover some of the rest, and more
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DB Performance and Scalability 
Solutions
Ø Some DB performance and scalability solutions:

– Query Caching
– BlockFactor
– Indexes
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Repeatedly Requesting the 
Same Data
Ø Many web apps suffer from unnecessarily 

requesting the same data over and over
– Doesn’t really matter if DB is well-designed

Ø Examples include:
– Providing drop-down list of states on a reg. form

• When did we last add a new state?
– A company phone directory

• How often are employees added/removed?
– Reporting management information

• Does it need to be accurate to the second?
– Showing search results n-records at a time 

• Search criteria doesn’t change for “next 10” records
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Query Caching

Ø CF provides two means of caching query results for re-use
– Variable-based query caching

• Leverages ability to store any variable in server, application, or 
session scope

• Since a query resultset is a variable, it can be scoped as such
• May surprise those who never thought of it

– Time-triggered query caching (a.k.a. “query result caching”)
• New attributes for CFQUERY to indicate that any code executing 

that query should create/use cached copy for given timeframe

– Will show how to use each of these

Ø Also look into CFCACHE and CFSAVECONTENT tags 
– These cache the entire CF page or page portions
– Not covered in this seminar but important to performance
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Variable-based Query Caching

Ø ColdFusion offers 3 scopes for storing persistent 
variables:
– Session scope

• Persists for the life of a single user’s session until 
server is restarted or session times out

– Application scope
• Persists for all users of a given application until server 

is restarted
– Server scope

• Persists for all users of entire CF server until server is 
restarted

Ø I’ll have to presume for this class that you 
understand setup and use of these
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Variable-based Query Caching

Ø Just as we can assign variables to these scopes
– we can declare that a CFQUERY NAME value use a 

persistent scope, as in:

– Now, this query result set is stored with all other application 
variables

• Can be referred to by any code anywhere in this application 
– meaning, under control of same CFAPPLICATION

<CFQUERY DATASOURCE=“ProdPrsnl” NAME=“application.GetStates”>
SELECT State, StateAbbrev
FROM States

</CFQUERY>

<SELECT NAME=“state”>
<CFOUTPUT QUERY=“application.GetStates”>

<OPTION VALUE=“#StateAbbrev#”>#State#
</CFOUTPUT>
</SELECT>

our practice makes you perfect SM www.systemanage.com

Avoid Recreating Cached 
Resultset
Ø Once cached, query shouldn’t be executed again

– At least not until the data it reflects changes

Ø How to avoid executing query if already “cached”?
– Test if query already exists, with IsDefined()

Ø Now this query will be executed only once but be 
available for the life of its indicated scope

<CFIF NOT IsDefined(“application.GetStates”)>
<CFQUERY DATASOURCE=“ProdPrsnl” NAME=“application.GetStates”>

SELECT State, StateAbbrev
FROM States

</CFQUERY> 
</CFIF>
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Where to Create/Update 
Variable-based Cached Query?
ØWhere might it be sensible to put query creation 

code to be cached for all app users?
– Application.cfm

ØWhen should the query be re-executed? 
– Whenever its underlying database table changes

• In whatever template performs changes to data
• Only dilemma: if code outside your control updates 

DB

Ø Consider use of session scope to hold a user’s 
search results over many “next n” pages?
– Create/cache it on the search action page
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Another Challenge: Locking 
Issues
Ø Shared scope variables should be locked when written to

– Should probably instead code query as:

– Note use of “exclusive” type of lock
• Not wrapping query in lock because you should avoid holding 

locks any longer than needed
– Why make lock wait for query to run? 
– It should just be locked for however long it takes to assign 

the result set to the persistent variable

<CFQUERY DATASOURCE=“ProdPrsnl” NAME=“GetStates”>
SELECT State, StateAbbrev
FROM States

</CFQUERY>
<CFLOCK SCOPE="APPLICATION" TYPE="EXCLUSIVE" TIMEOUT="5">

<CFSET application.GetStates= GetStates>
</CFLOCK>
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Locking Issues (cont.)

Ø Should also lock when reading
– Could code CFOUTPUT loop as:

– Note use of “readonly” type of lock
– Note too that TIMEOUT attribute in each case has nothing to 

do with how long this lock will take
• It’s how long this lock will wait for lock being held by others 

– Could instead assign cached result to local variable within 
lock (locking just that assignment) and loop over that

• Will likely release lock faster (for benefit of others updating 
same-scoped variables)

• Comes at cost of creating local copy of resultset each time

<CFLOCK SCOPE="APPLICATION" TYPE=“READONLY" TIMEOUT="5">
<SELECT NAME=“state”>
<CFOUTPUT QUERY=“application.GetStates”>

<OPTION VALUE=“#StateAbbrev#”>#State#
</CFOUTPUT>

</SELECT>
</CFLOCK>
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More Challenges

Ø More challenges of variable-based cached queries
– You’re responsible for managing cache (creating, 

updating)
• To delete cache, delete variable

– <CFSET x = StructDelete(application,”GetEmployees”)>

– Be careful about creating too many
• They’re just stored in memory

– Large queries could take a lot of memory
• No way for admin to limit memory used
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More Challenges

Ø More challenges of variable-based cached queries
– You’re relying on previous code to have created the cache, 

such as application.cfm in one example
• Can look confusing to developers unfamiliar with this form of 

caching
• And what if it didn’t exist? Hadn’t been run?

– Consider how CFPARAM creates a variable only if it doesn’t 
exist

• Wouldn’t it be nice if you could just do the query where you need 
it?

– and if it hadn’t been cached, it would be?
– And, further, it would automatically re-cache itself at defined 

intervals (after x minutes, or after certain date)

Ø Next alternative to query caching solves these problems
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Time-triggered Query Caching: 
CACHEDAFTER
Ø Referred to in “Certified CF Developer Study Guide” as 

“Query Result Caching”

Ø Does not involve creating variables
– Instead, specify a caching attribute on CFQUERY

• CACHEDAFTER or CACHEDWITHIN

– Example:

– This would cache the result the first time the query is run after 
specified date/time (and use the cache from then on)

• Meant to be used with fixed date/time, in the future
• Might be useful when you know data is updated at 10pm

<CFQUERY DATASOURCE=“ProdPrsnl” NAME=“GetSales”
CACHEDAFTER=“09-01-01 10:00 pm”>

SELECT * FROM
FROM SalesStats

</CFQUERY>
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Time-triggered Query Caching: 
CACHEDWITHIN
Ø CACHEDWITHIN works differently

– This would cache the result the first time the query is run and 
reuse the cache each time query is executed 

• until specified timespan has passed since it was first cached
• will re-cache it the next time it’s run after specified timespan
• Meant to be used with relative time span

– Can be specified in either days, hours, mins, secs
• Useful to cache for a specific amount of time from the first time 

it’s cached
– CFML reference mistakenly indicates this should “define a 

period of time from the present backwards”

<CFQUERY DATASOURCE=“ProdPrsnl” NAME=“GetEmployees”
CACHEDWITHIN=“#CreateTimeSpan(0,0,5,0)#”>

SELECT * FROM
FROM Employees

</CFQUERY>
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Time-triggered Query Caching: 
Issues
Ø Can observe if query was taken from cache

– If debugging is turned on, query time shows “cached 
query”

• Note that CFQUERY.ExecutionTime variable does 
NOT show this value

– Shows “0”, doesn’t always mean it was a cached 
query

Ø Important difference from variable-based caching
– Query remains where it normally would appear
– No need to test existence, no shared variables 

used, no need to worry about <CFLOCK> 
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Time-triggered Query Caching: 
Dynamic Queries
Ø A single CFQUERY may generate multiple cached 

results
– If SQL is built dynamically, each unique SQL 

statement is cached separately
• Consider search action page driven by form fields

– Same CFQUERY with different resulting SQL will 
create separate cached result

– Pro
• Means more potential to benefit from cache

– Con
• Means lots of cached results could be created
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Time-triggered Query Caching: 
Admin Settings
Ø Time-triggered caching is governable by admin 

settings
– Can restrict total number of cached queries allowed
– Limit the maximum number of cached queries on 

the server to xxx queries
• When the limit is exceeded, oldest query is dropped 

and replaced
• Defaults to 100 on installation of CF

– Can disable this sort of caching by setting to 0
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Time-triggered Query Caching: 
Sharing Cached Results
Ø Mentioned previously that unique SQL in same 

query will result in different cached results
– Conversely, and perhaps unexpectedly to many, 

cached result for given SQL can be reused by 
another CFQUERY

• To reuse another query’s cached result, query must 
have identical SQL and DATASOURCE

– And, if specified, identical DBTYPE and Login info
• Doesn’t need to have same query NAME
• Of course, doesn’t need to be in same template

– Nor even in same application
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More About CachedAfter

Ø CF docs are very sparse about CACHEDAFTER
– Both the docs and the Certification Study Guide say 

it supports only a date
• Will support a date and time

– Can specify date as any valid CF date, then add 
time

» such as “09/01/01 10:00pm” or “09-01-2001 
22:00”

• To cache each day as of 10pm, use
– CACHEDAFTER="#dateformat(now())# 22:00"

• Can’t, however, just specify a time
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Another Performance Factor: 
BlockFactor
Ø BLOCKFACTOR gets a lot of press by some as important 

performance factor
– May not bring value for most
– Also easily misunderstood

Ø When CF and database communicate to create result set, 
may transer only one record at a time
– Applies to some DB drivers 

• ODBC, Oracle according to docs
– BLOCKFACTOR is an attribute on CFQUERY

• Allows specifying a number of records to transfer at a time
• Does NOT control HOW MANY records are retrieved

– If not supported by DB driver, won’t cause error 
• but could degrade performance

– If supported but set too large, could degrade performance
– Many feel it’s best to not set at all
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About DB Column Indexes

Ø When column in table is searched, does the DBMS look at 
each record in entire table, one at a time?
– Yes, if the column is not indexed
– Think of index as similar to a book’s index

• Just as we can find info quickly, so can DBMS
• Can have dramatic impact on performance of queries

– In small tables, lack of index may not be noticeable
• Then again, with more users doing more queries, could become 

a problem

– Whether a column is indexed is optional
• Except that primary key is always indexed
• Should consider adding index to columns frequently searched

– May also improve sorting by a given column

– Beware: indexing a column isn’t always a good idea
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Indexing Cautions

Ø Before rushing off to create indexes on too many 
columns, consider a few cautions:
– Each index requires time to be maintained during 

record insert/udpate operations
– Not all data is suitable for indexing

• Depending on indexing technique used by DBMS, 
data without many unique values may not benefit

– State may not be good index while lastname is
– Indexed data does add to storage requirement for 

DB
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Creating/Adding Indexes

Ø To add an index to a table for a given column

– Indexname must be unique within given table
– Can create index before or after populating table 

with data

Ø CF and even SQL coding isn’t typically changed by 
adding indexes
– Just see improved query performance (at tradeoff of 

aforementioned cautions)

CREATE INDEX indexname
ON tablename (columnname) 
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DB Reliability Solutions

Ø Some DB reliability solutions:
– Constraints 
– Triggers
– Transaction Management
– Bind Parameters
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About DB Column Constraints

Ø In Database 2 seminar, we learned about inter-related tables 
and how to create JOINs between them
– Learned that, in this example, values of Employees.DeptID 

reflect those in  Departments.DeptID
• Can be used to lookup Dept name by way of joining them

– What ensures that the only values stored in 
Employees.DeptID come from Departments.DeptID?

• Many developers don’t take steps to ensure this

212-01-00Cindy2

106-04-98Bob1

4

3

EmpID

Employees

205-30-99Beth

101-01-01John

DeptIDHireDateName

Engineering2
Sales1
DeptDeptID

Departments
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Problems Managing Related 
Table Values
Ø Others take responsibility to manage it themselves 

– Trying to maintain this form of integrity is 
challenging

– Need to do it everywhere data may be updated
– Also need to do it for updates/deletes
– Take effort to code, then execute, such checks

Ø Far better to let DBMS manage this itself
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Creating/Adding Constraints

Ø Can create constraints for and between such 
related table columns

– With this in place, an attempt to insert invalid value 
for DeptID in Employees (a value not in 
Departments.DeptID column), DB will throw error

– Can catch this error in CF with CFTRY
• Surround CFQUERY doing insert/udpate

ALTER TABLE Employees
ADD CONSTRAINT FK_DeptID

FOREIGN KEY (DeptID) 
REFERENCES Departments (DeptID)



21

our practice makes you perfect SM www.systemanage.com

About Unique Constraints

Ø Similar dilemma arises when you want unique 
values for a given column
– May want to prevent multiple records with same 

email address
• Learned in previous seminar that primary key values 

are guaranteed to be unique
• But what if column (like email) is not the primary key?

– Again, could try to manage this yourself
• Doing test before doing insert/update to ensure email 

address value doesn’t already exist
– Or could have DBMS manage it, with unique 

constraint
• May be created with CREATE UNIQUE INDEX or 

with another kind of CONSTRAINT
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About Check Constraints

Ø Still another reliability option is that some 
databases allow creation of Check Constraints
– These are defined for a given column to ensure 

values meet some defined criteria
– Examples include:

• minimum/maximum values
• range of values
• List of possible values
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Visually Defining Indexes, 
Constraints
Ø SQL statements will work for nearly all DBMS’s

– Many DBMS’s offer visual interface for managing 
these

• MS Access “Design Table” and “Tools>Relationships” 
features

• SQL Server Enterprise Manager
• And more

– Again, be aware that in many instances, the defaults 
are to not define indexes, constraints

• If you’d like to use them, you may need to add them
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Ensuring Further Data 
Reliability
ØWe know that constraints can ensure that data 

meets certain criteria during insert/update

Ø May need to ensure further integrity
– May want to convert data to uppercase during 

insert/update
– May need to write data to another table on 

insert/update
• keeping accountbalance column in account table 

updated for each deposit/withdrawal tracked in 
transaction table

– May need to check data in another table before 
allowing insert/update
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Triggers

Ø Some DBMS’s allow creation of triggers to perform these 
sort of integrity checks and cross-table update
– Specified in form of SQL statements
– Stored in database, associated with given table
– Typically can define separate triggers to act upon insert, 

update, and/or delete against that table
– Syntax will differ between DBMS’s. An example: 

– When performing similar actions, constraints typically execute 
more quickly than triggers (use them instead)

CREATE TRIGGER triggername
ON tablename
FOR INSERT|UPDATE|DELETE
AS
UPDATE tablename SET columnname=UPPER(columnname)
WHERE tablename.columnname = INSERTED.columnname
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Transaction Management

Ø Multiple users can (and generally do) update data 
in databases at the same time
– Transaction processing prevents them updating the 

exact same data at the same time
– Also allows a group of related updates to be 

packaged such that if they don’t all succeed, none 
will succeed

Ø Generally controlled by the DBMS for us
– We can influence it from within CF by way of the  

CFTRANSACTION tag

Ø See Chapter 19 of Certification Study Guide for 
more details and code samples
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Grouping Updates

ØWhen multiple updates must take place, otherwise 
none should take place, use CFTRANSACTION

Ø This simplest and oldest form simply ensures that 
if the first update fails, the second will as well
– Called backing out or “rolling back” the first update
– Up to the database to handle the rollback

• More advanced DBMS will handle rollback even after 
recovering from crash of DB server that may have 
caused transaction to fail in the first place

<CFTRANSACTION>
<CFQUERY ...>

UPDATE Checking SET Balance=Balance-100
WHERE AccountID = 1234

</CFQUERY>
<CFQUERY ...>

UPDATE Savings SET Balance=Balance+100
WHERE AccountID = 1234

</CFQUERY>
</CFTRANSACTION>
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Isolation Levels

Ø When performing a group of transactions, need to be careful 
about other users reading the data we update, and vice-
versa
– Databases generally define up to 4 isolation levels that can 

influence these sort of cross-user locks, from
• Serializable (default)

– Can indicate that no reads/updates by others take place 
during our update

• Through Repeatable_Read and Read_Committed
– Not supported by all DBMS’s

• Read_Uncommitted
– Or can indicate that we don’t care if others are 

reading/updating

Ø We can specify a desired isolation level with 
CFTRANSACTION ISOLATION attribute
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Programmable 
Commit/Rollback
Ø Mentioned that CFTRANSACTION would rollback all updates 

if any failed
– Didn’t mention, but COMMIT takes place at end of transaction

• Commit tells DBMS to consider update finished
– CFQUERY updates outside CFTRANSACTION also do 

COMMIT at end of CFQUERY

– Release 4.5 added ability to perform BACKOUT (and 
COMMIT) programatically within transaction

• <CFTRANSACTION ACTION=“Backout|Commit”/>
– This tag is designed to be used within other 

CFTRANSACTION tag
» Doesn’t allow embedded tags of its own, but  needs to 

be closed to avoid confusion with surrounding 
CFTRANSACTION

» Could use closing </CFTRANSACTION> tag or just 
closing slash at end of tag, as above 
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Ø ColdFusion is a loosely typed language
– Numbers considered string until used for math

Ø Databases are strongly typed
– Column expecting numbers will want numbers
– But CF will be passing a string that looks like number

• Database can do conversion to fix that
• But we can help the database to know the datatype
• Can help performance by specifying bind parameters

Using Bind Parameters

<CFQUERY ...>
SELECT * FROM EMPLOYEES
WHERE EmpID =

<CFQUERYPARAM CFSQLTYPE="CF_SQL_INTEGER" VALUE="#url.empid#">
</CFQUERY>
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Bind Parameter for Reliability

ØWhen passing form or URL variables on some SQL 
statements (with some DB drivers)
– User can pass strings to add unexpected SQL
– Bind parameters can stop that

• If expecting to bind numeric data and user passes 
text (including SQL statements), bind will strip them
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DB Extensibility Solutions

Ø One DB extensibility and maintainability solution:
– Stored Procedures
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About Stored Procedures

Ø We typically specify SQL statements within CFQUERY tags 
within our CF templates
– What if multiple templates would execute same SQL?
– While we could use CFINCLUDE to re-use this code, there 

are options in most DBMS’s to store that code in the DBMS
– Then would call upon it much like we call a custom tag

• But instead of executing CF code, it just executes SQL

– Each DBMS has its own language for the SQL to be used for 
such stored procedures, for instance:

• Oracle: PL/SQL
• SQL Server: T/SQL
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Creating Stored Procedures

Ø Other benefits:
– Stored procedure typically compiled and stored in DBMS
– Parameters can be passed to procedure to be used in SQL 

execution
– Can create and use variables, pass data among statements, 

and perform conditional processing within the SQL
– Can execute multiple statements in one procedure
– Stored procedure may be able to return multiple record sets
– Example might be:

– Can create Stored Procedures using CFQUERY
• More typically created in DBMS, managed by DB Admin  

CREATE PROCEDURE procedurename in/outparms
ON tablename
AS
SQL statements
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Executing Stored Procedures

Ø Once stored in a DBMS, we can execute the stored 
procedure by calling upon it, in either:
– CFQUERY
– CFSTOREDPROC

Ø Procedure executes in the DBMS (just as if we’d passed the 
SQL) 

Ø Returns one or more result sets to process (just as with 
normal CFQUERY)

Ø Working with SPs in Oracle has complications
– See Macromedia Knowledge Base articles

Ø Though MS Access doesn’t have stored procedures, there 
are ways to fake it
– use Access “parameter queries” feature
– See my CFDJ article from Oct 99: “Stored Procedures in 

Access? Yes Indeed”
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Other Measures of Architecture

Ø Availability
– Assurance that a component/resource is always 

available
– Can be enabled with redundancy and failover

• Some may know that CF Servers can be clustered
– From DB standpoint, no built-in CF features

• On simple level, could use CFTRY to catch failures 
and attempt query/update of alternate DB

• On larger level, enable backup/restore
– Often ignored by CF developers 

• Replication may play a part
– Some DBMS implementations better than others
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Other Measures of Architecture

Ø Security
– Ability to ensure that the system has not been 

compromised
– By far the most difficult to address
– Involves protecting confidentiality, integrity, 

availability, more
– Will be highly influenced by DBMS, configuration, 

perhaps programming
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Other Measures of Architecture

Ø Manageability
– Ability to manage the system in order to ensure 

continued health with respect to performance, 
scalability, reliability, availability and security

– Involves both monitoring and ability to improve 
systemic qualities dynamically without changing 
system

• ColdFusion 5 offers monitoring features to observe 
system, servers, and even successful execution of 
probing templates

• Most DBMS’s and operating systems also offer 
monitoring tools
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Some Other Tidbits for You to 
Investigate
Ø Query of Queries

Ø VIEWs 

Ø DB Security management
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Where to Learn More

Ø Version 5 CF manuals: 
– Installing and Configuring ColdFusion Server
– Developing ColdFusion Applications
– CFML Reference

Ø Books by Ben Forta:
– Teach Yourself SQL in 10 Minutes
– Certified ColdFusion Developer Study Guide
– ColdFusion Web Application Construction Kit
– Advanced ColdFusion Development

Ø Many other CF and SQL books available, including
– Practical SQL Handbook (new edition available)
– SQL For Smarties (any Joe Celko book)
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Contact Information

Contact for follow-up issues
– Email: carehart@systemanage.com
– Phone: (301) 604-8399
– Web: www.systemanage.com

Also available for
– Training (custom or pre-written)

• CF, DB, Jrun/J2EE, Javascript, wireless, and more
– Consulting (very short-term engagements)

• best practices, architecture, setup, troubleshooting, etc.

– Developer Group Mentoring, and more
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Q&A
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