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Agenda

Ø Slicing and Dicing Data in Many Ways

Ø Handling Distinct Column Values

Ø Manipulating Data with SQL

Ø Summarizing Data with SQL (Counts, Averages, 
etc.)

Ø Grouping Data with SQL

ØWhere to Learn More

Ø Q&A
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Slicing and Dicing Data in Many 
Ways
Ø There’s more to database processing than simply 

selecting columns for display. May want to 
massage the data:
– Handling distinct column values

• Show each distinct lastname for employees
• Create a phone directory with each lastname listed 

only once
– Manipulating data before or after selecting it

• Show the first 30 characters of a description column
• Find rows where the year in a date column is a 

particular year
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Slicing and Dicing Data in Many 
Ways
Ø As well as:

– Summarizing data
• Show how many employees we have
• Show how many employees make more than $40k
• Show how many employees have not been 

terminated
• Show the average, max, and min salary for all 

employees
• Show the total salary for all employees
• Show how many distinct salary levels there are
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Slicing and Dicing Data in Many 
Ways (cont.)
Ø As well as:

– Grouping Data
• Show those counts, averages, or totals by 

department
• Show those departments whose count/avg/total 

meets some criteria
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Working with Data in SQL 
Versus ColdFusion
Ø SQL provides the means to do each of those tasks

– And ColdFusion has some means to do some of them
Ø Many developers create complicated CF programs to do 

what both CF and SQL can enable with simpler constructs
– Same problems arise in other web app dev environments

Ø Experienced developers will admonish:
– Don’t do things in your program that you can better do in SQL
– The challenge is deciding which to use

Ø This seminar is about:
– making maximum use of both CF and SQL for query 

processing and data manipulation
– saving time for you and your system
– creating more effective applications
– Only 1 topic, though, is CF-specific. Rest is pure SQL
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ColdFusion vs SQL Functions

Ø You may know that CF offers hundreds of functions, for 
string, numeric, date, list and other manipulation
– These are used in a format such as Left(), DateFormat()
– Used within CF expressions, can be used to build SQL
– Evaluated before SQL is passed to the DBMS

Ø SQL also offers several functions, as we will learn
– Also used in same format, such as Left()
– Indeed, many share the same name!
– Evaluated by DBMS while processing the SQL

• Effects how the query results appear or are processed

Ø Could indeed use both CF and SQL functions in a given SQL 
statement
– Again, need to take care in deciding which to use
– In this seminar, focus is on SQL functions
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Handling Distinct Column 
Values
Ø Typical Problems:

– Show each distinct lastname for employees
– Create a phone directory with each lastname listed 

only once

Ø Can try to do it manually, looping through all rows 
and placing unique values in an array
– Tedious, Slow, Unnecessary!

Ø Both SQL and ColdFusion have simple solutions to 
produce list of unique values
– Use SQL approach to obtain just unique values
– Use CF approach to create report breaks on each 

unique value
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Ø Problem: Show each distinct lastname for employees

Ø Solution: DISTINCT keyword used before column name

Ø Example: (assuming we had a Lastname column)

Ø Possible Query Result Set Values:
Abbot
Brown
Coleman

Ø Note: when used with multiple columns, DISTINCT must be 
specified first. Applies to all columns
– Can’t do SELECT Degree, DISTINCT Salary
– Can do SELECT DISTINCT Salary, Degree

• Creates distinct instances of the combined values from each

Handling Distinct Column 
Values: DISTINCT Keyword

SELECT Distinct LastName
FROM Employees
ORDER BY Lastname
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Handling Distinct Column 
Values: CFOUTPUT GROUP
Ø Could have solved that same problem in CF

– Either manually (don’t do it!)
– Or by way of CFOUTPUT’s GROUP attribute

• Provide name of column by which data was sorted
• Will show only the unique values of that column

Ø Would produce equivalent result to that on previous slide
– Note that it has nothing to do with GROUP in SQL (later)
– It works. But for this problem, DISTINCT is better
– Power of CFOUTPUT GROUP, though, is in showing both the 

distinct values and all the other rows for each value

<CFQUERY DATASOURCE=“ProdPrsnl” NAME=“GetEmployees”>
SELECT LastName FROM Employees
ORDER BY LastName 

</CFQUERY>
<CFOUTPUT QUERY=“GetEmployees” GROUP=“LastName”>

#LastName#<br>
</CFOUTPUT>
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Handling Distinct Column Values: 
CFOUTPUT GROUP (cont.)
Ø Problem: Create a phone directory with each lastname listed 

only once
Ø Solution: CFOUTPUT GROUP, with embedded CFOUTPUT to 

process each row per unique value
Ø Example:

Ø Possible Results:
Abbot
John A – x3456
John R – x3476
Brown
Alice C – x3421
Coleman
Bob H – x3499

<CFQUERY DATASOURCE=“ProdPrsnl” NAME=“GetEmployees”>
SELECT LastName, Minit, FirstName, Phone 
FROM Employees
ORDER BY LastName 

</CFQUERY>
<CFOUTPUT QUERY=“GetEmployees” GROUP=“LastName”>

<u>#LastName#</u><br>
<CFOUTPUT>

#FirstName# #Minit# - #Phone#<br>
</CFOUTPUT>

</CFOUTPUT>

Once per 
LastName

Once for each 
row having 
that LastName
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Handling Distinct Column Values: 
CFOUTPUT GROUP (cont.)
Ø Can nest CFOUTPUT Groups

– Once for each ORDER BY column listed
Ø Example:

Ø Possible Results:
Abbot
John 

• A - x3456
• R - x3476

Brown
Alice

• C - x3421
Coleman
Bob

• H – x3499

<CFQUERY DATASOURCE=“ProdPrsnl” NAME=“GetEmployees”>
SELECT LastName, FirstName, Minit, Phone 
FROM Employees
ORDER BY LastName, FirstName 

</CFQUERY>
<CFOUTPUT QUERY=“GetEmployees” GROUP=“LastName”>

<u>#LastName#</u><br>
<CFOUTPUT GROUP=“FirstName”>

#FirstName#<br><ul>
<CFOUTPUT>

<li>#Minit# - #Phone#
</CFOUTPUT>
</ul>

</CFOUTPUT>
</CFOUTPUT>

No QUERY
attribute

Once for each 
row having 
same 
LastName and 
FirstName
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Manipulating Data with SQL

Ø Typical Problems:
– Show the first 30 characters of a description column
– Find rows where the year in a date column is a 

particular year

Ø Tempting to try with CF functions
– May be wasteful, or impossible

Ø SQL functions may be more efficient, and could 
even have more features
– In any case, remember admonition:

• Don’t do in CF that which you can do in SQL
– Beware: while some SQL functions are shared by all 

DBMS’s, each supports its own or variations
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Manipulating Data with SQL: 
Text Functions
Ø Problem: Show the first 30 characters of a 

description column
– Can certainly use CF’s Left() function to substring 

the result passed back from SQL
• But this means sending all data from DB to CF, only 

to then be stripped down to 30 chars. Wasteful!

Ø Solution: Use SQL Left() function

Ø Example:

Ø Note: There are many other similar text 
manipulation functions, depending on DBMS
– Length(), Lower(), Upper(), Ltrim(), Soundex(), etc.
– Investigate DBMS documentation to learn more

SELECT Left(Description,30) FROM Products
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Manipulating Data with SQL: 
Date Functions
Ø Problem: Find rows where the year in a date column is a 

particular year
– Assuming date column contains month, day, and year, how to 

just search on year?
– Could find records between 01/01/xx and 12/31/xx

Ø Solution: Use SQL DatePart() function
Ø Example:

Ø Note: each DBMS will have its own date handling functions 
and function arguments
– This example is from Access. Could also use Year(HireDate)

Ø There are many other similar date manipulation functions, 
depending on DBMS
– Also will find numeric functions, system functions, and more

SELECT * FROM Employees
WHERE DatePart(“yyyy”,HireDate) = 2001
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Summarizing Data with SQL

Ø Typical Problems:
– Show how many employees we have
– Show how many employees make more than $40k
– Count how many employees have not been terminated
– Show the average, max, and min salary for all employees
– Show the total salary for all employees
– Show how many distinct salary levels there are

Ø Again, tempting to try with CF processing
– May be complicated, wasteful
– SQL functions may be more efficient, more powerful
– SQL functions for summarixing data are known as “aggregate 

functions”: Count, Min, Max, Avg, Sum
• Others include StdDev (standard deviation), Var (variance)
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Summarizing Data with SQL:  
Count(*) Function
Ø Problem: Show how many employees we have

– Yes, we can find all records and look at recordcount
• But if all we want it the count, this is wasteful!!!

Ø Solution: Use SQL Count(*) function
Ø Example:

Ø Possible Query Result Set Values:
Total Employees: 54

Ø Notes: 
– We must use a column alias in order to refer to that count 

within ColdFusion
– Returns only a single-record resultset (and does it FAST!)
– Not to be confused with SELECT * (which is SLOW!)

<CFQUERY DATASOURCE=“ProdPrsnl” NAME=“GetEmployees”>
SELECT Count(*) as RecCount
FROM Employees 

</CFQUERY>
<CFOUTPUT>

Total Employees: #GetEmployees.RecCount#<br>
</CFOUTPUT>
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Summarizing Data with SQL:  
Count(*) Function and Filter
Ø Problem: Show how many employees make more 

than $40k

Ø Solution: Use SQL Count(*) function and a filter
– Simple matter of adding a WHERE clause to 

indicate the desired criteria

Ø Example: <CFQUERY DATASOURCE=“ProdPrsnl” NAME=“GetEmployees”>
SELECT Count(*) as RecCount
FROM Employees
WHERE Salary > 40000

</CFQUERY>
<CFOUTPUT>
Num. employees making +40k: #GetEmployees.RecCount#<br>

</CFOUTPUT>
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Summarizing Data with SQL:  
Count(col) Function
Ø Problem: Count how many employees have been terminated

Ø Solution: Use SQL Count(column) function
– Instead of counting all records, count all having a value for a 

given column
– Assume terminated employees have a value in the  

TerminationDate column 

Ø Example:

Ø Note: doesn’t count records having null column value
– Will discuss nulls later
– In this case, the behavior is as expected. May not always be

<CFQUERY DATASOURCE=“ProdPrsnl” NAME=“GetEmployees”>
SELECT Count(TerminationDate) as RecCount
FROM Employees

</CFQUERY>
<CFOUTPUT>
Num. Employees terminated: #GetEmployees.RecCount#<br>

</CFOUTPUT>
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Summarizing Data with SQL:  
AVG/MAX/MIN Functions
Ø Problem: Show the average, max, and min salary for all 

employees
Ø Solution: Use SQL Avg(), Min(), or Max() functions

– Besides just counting records having any value for a given 
column, can also use these functions to summarize

Ø Example:

Ø Notes: 
– Like Count(column) function, these functions ignores columns 

with null values
• I.e., is average of records having a value for that column

– Also, can add a filter in order to compute summaries for 
records meeting some other criteria

<CFQUERY DATASOURCE=“ProdPrsnl” NAME=“GetEmployees”>
SELECT Avg(Salary) as AvgSal, Min(Salary) as MinSal, 

Max(Salary) as MaxSal
FROM Employees

</CFQUERY>
<CFOUTPUT>
Avg Sal: #GetEmployees.AvgSal#<br> ...

</CFOUTPUT>
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Summarizing Data with SQL:  
SUM Function
Ø Problem: Show the total salary for all employees

Ø Solution: Use SQL Sum() function
– Just as other functions compute Avg/Min/Max, can 

use Sum function to add up all values of column

Ø Example:

Ø Notes: 
– Can also perform mathematical computation on the 

column and sum that:
SELECT SUM(Salary * 1.20)

– Or perform computation between two or more 
columns and sum that, as in:
SELECT SUM(Salary*RaisePct)

SELECT Sum(Salary) as SumSal
FROM Employees
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Summarizing Data with SQL:  
Using DISTINCT with Functions
Ø Problem: Show how many distinct salary levels there are

Ø Solution: Use DISTINCT keyword with functions
– Rather than perform given function against all values of the 

given column in all records, can performs it against only the 
unique values that exist

Ø Example:

Ø Notes:
– Note that this will produce just one number: the number of 

distinct salary values that exist
• To produce instead a count of employees at each salary level, 

need to learn about SQL GROUP BY clause (coming next)

– Can also use AVG (average of distinct values rather than of 
all values). MIN and MAX would return same result either way

SELECT Count(DISTINCT Salary) as NumDistinctSals
FROM Employees
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Summarizing Data with SQL:  
Using DISTINCT with Functions
Ø Notes:

– Note also, there’s an opposing ALL keyword that 
can be used, instead of DISTINCT; performs 
aggregation against all values 

• This is the default and doesn’t need to be specified
– MS Access does not support this use of DISTINCT 

(or ALL) within aggregate functions
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Grouping Data with SQL

Ø Typical Problems:
– Show those counts, averages, or totals by 

department
– Show which departments have count/avg/total 

meets some criteria

Ø SQL provides a GROUP BY clause that can be 
used to create a list of unique values for a column
– Difference from DISTINCT is that it also “rolls up” 

the rows 
• aggregates some computation over all the records 

having that unique value
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Grouping Data with SQL

Ø Assume the employees table has a Dept column

Ø Example: 

Ø Note: this simple example creates a result no 
different than SELECT DISTINCT Dept
– You would not typically use this statement, because 

you’re also asking the DB to “roll up” rows having 
the same value of Dept, but are aggregating nothing

– Difference comes when combined with the 
previously presented aggregate functions, which 
then aggregate the data BY the unique “grouped” 
column values 

SELECT Dept FROM Employees
GROUP BY Dept
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Grouping Data with SQL:  Using 
GROUP BY with Count Function
Ø Problem: Show count of employees by department
Ø Solution: Use GROUP BY with COUNT(*) function
Ø Example:

Ø Possible Query Result Set Values:

Ø Notes:
– In example, first row in resultset represents records with null 

value for Dept column
– Order of rows is random. Could add ORDER BY Dept

• If present, must be specified AFTER the GROUP BY

SELECT Dept, Count(*) as CountEmp
FROM Employees
GROUP BY Dept

33Engineering

15Sales

4

7Marketing
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Grouping Data with SQL:  Using 
GROUP BY with Avg Function
Ø Problem: Show average salary by department

Ø Solution: Use GROUP BY with Avg(column) function
– Aggregate on a column other than that being grouped

Ø Example:

Ø Possible Query Result Set Values:

Ø Notes:
– Could use Min/Max/Count(column) too

SELECT Dept, Avg(Salary) as AvgSalary 
FROM Employees 
GROUP BY Dept

75500Engineering

83276Sales

45687

55000Marketing
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Grouping Data with SQL:  Using 
GROUP BY with Functions
Ø More notes: 

– Columns to be SELECTed can only be aggregate 
functions and/or column named in GROUP BY

• Could not SELECT Lastname, Count(*) FROM Employees 
GROUP BY Dept

– Since LastName isn’t being GROUPed and isn’t 
an aggregate function itself

– Often a source of confusion, though it clearly 
wouldn’t make sense to show LastName here
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Grouping Data with SQL:  Using 
GROUP BY with Filter
Ø Problem: Show average salary by departments of 

employees who’ve completed grade 12

Ø Solution: Use GROUP BY with filter
– WHERE clause limits which records are to be GROUPed

Ø Example:

Ø More notes: 
– WHERE must occur after FROM, before GROUP

• Order of appearance: 
– FROM, WHERE, GROUP BY, ORDER BY

– To select records whose aggregated values meet some 
criteria, use HAVING clause

SELECT Dept, Avg(Salary) as AvgSalary 
FROM Employees 
WHERE GradeCompleted >= 12
GROUP BY Dept
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Grouping Data with SQL:  Using 
GROUP BY with HAVING
Ø Problem: Show departments whose employees have an 

average salary greater than $40,000

Ø Solution: Use GROUP BY with HAVING

Ø Example:

Ø Note:
– HAVING must occur after GROUP BY, before ORDER BY
– Order of appearance: 

• FROM, WHERE, GROUP BY, HAVING, ORDER BY

– Expression in HAVING can’t refer to alias from SELECT 
clause

• In example above, couldn’t use HAVING AvgSalary > 40000

SELECT Dept, Avg(Salary) as AvgSalary 
FROM Employees 
GROUP BY Dept
HAVING Avg(Salary) > 40000
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Subjects of Part 2

Ø Slicing and Dicing Data in CF and SQL: Part 2
– Cross-Referencing Tables (Inner and Outer Joins)
– Handling Long Text
– Handling Nulls
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Some Other Tidbits for You to 
Investigate
Ø Nesting multiple joins

Ø TOP, TOP n PERCENT options on SELECT

Ø UNIONs

Ø Nested Subquery

Ø EXISTS predicate

Ø Using NULL in INSERT, UPDATE
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Where to Learn More

Ø Version 5 CF manuals: 
– Installing and Configuring ColdFusion Server
– Developing ColdFusion Applications
– CFML Reference

Ø Books by Ben Forta:
– Teach Yourself SQL in 10 Minutes
– Certified ColdFusion Developer Study Guide
– ColdFusion Web Application Construction Kit
– Advanced ColdFusion Development

Ø Many other CF and SQL books available, including
– Practical SQL Handbook (new edition available)
– SQL For Smarties (any Joe Celko book)
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Contact Information

Contact for follow-up issues
– Email: carehart@systemanage.com
– Phone: (301) 604-8399
– Web: www.systemanage.com

Also available for
– Training (custom or pre-written)

• CF, DB, Jrun/J2EE, Javascript, wireless, and more
– Consulting (very short-term engagements)

• best practices, architecture, setup, troubleshooting, etc.

– Developer Group Mentoring, and more
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Q&A

?


