
1

our practice makes you perfect SM www.systemanage.com

Slicing and Dicing Data in
CF and SQL: Part 1
Charlie Arehart
Founder/CTO Systemanage
carehart@systemanage.com

SysteManage: our practice makes you perfect SM

our practice makes you perfect SM www.systemanage.com

Agenda

Ø Slicing and Dicing Data in Many Ways

Ø Handling Distinct Column Values

Ø Manipulating Data with SQL

Ø Summarizing Data with SQL (Counts, Averages,
etc.)

Ø Grouping Data with SQL

ØWhere to Learn More

Ø Q&A

2

our practice makes you perfect SM www.systemanage.com

Slicing and Dicing Data in Many
Ways
Ø There’s more to database processing than simply

selecting columns for display. May want to
massage the data:
– Handling distinct column values

• Show each distinct lastname for employees
• Create a phone directory with each lastname listed

only once
– Manipulating data before or after selecting it

• Show the first 30 characters of a description column
• Find rows where the year in a date column is a

particular year

our practice makes you perfect SM www.systemanage.com

Slicing and Dicing Data in Many
Ways
Ø As well as:

– Summarizing data
• Show how many employees we have
• Show how many employees make more than $40k
• Show how many employees have not been

terminated
• Show the average, max, and min salary for all

employees
• Show the total salary for all employees
• Show how many distinct salary levels there are

3

our practice makes you perfect SM www.systemanage.com

Slicing and Dicing Data in Many
Ways (cont.)
Ø As well as:

– Grouping Data
• Show those counts, averages, or totals by

department
• Show those departments whose count/avg/total

meets some criteria

our practice makes you perfect SM www.systemanage.com

Working with Data in SQL
Versus ColdFusion
Ø SQL provides the means to do each of those tasks

– And ColdFusion has some means to do some of them
Ø Many developers create complicated CF programs to do

what both CF and SQL can enable with simpler constructs
– Same problems arise in other web app dev environments

Ø Experienced developers will admonish:
– Don’t do things in your program that you can better do in SQL
– The challenge is deciding which to use

Ø This seminar is about:
– making maximum use of both CF and SQL for query

processing and data manipulation
– saving time for you and your system
– creating more effective applications
– Only 1 topic, though, is CF-specific. Rest is pure SQL

4

our practice makes you perfect SM www.systemanage.com

ColdFusion vs SQL Functions

Ø You may know that CF offers hundreds of functions, for
string, numeric, date, list and other manipulation
– These are used in a format such as Left(), DateFormat()
– Used within CF expressions, can be used to build SQL
– Evaluated before SQL is passed to the DBMS

Ø SQL also offers several functions, as we will learn
– Also used in same format, such as Left()
– Indeed, many share the same name!
– Evaluated by DBMS while processing the SQL

• Effects how the query results appear or are processed

Ø Could indeed use both CF and SQL functions in a given SQL
statement
– Again, need to take care in deciding which to use
– In this seminar, focus is on SQL functions

our practice makes you perfect SM www.systemanage.com

Handling Distinct Column
Values
Ø Typical Problems:

– Show each distinct lastname for employees
– Create a phone directory with each lastname listed

only once

Ø Can try to do it manually, looping through all rows
and placing unique values in an array
– Tedious, Slow, Unnecessary!

Ø Both SQL and ColdFusion have simple solutions to
produce list of unique values
– Use SQL approach to obtain just unique values
– Use CF approach to create report breaks on each

unique value

5

our practice makes you perfect SM www.systemanage.com

Ø Problem: Show each distinct lastname for employees

Ø Solution: DISTINCT keyword used before column name

Ø Example: (assuming we had a Lastname column)

Ø Possible Query Result Set Values:
Abbot
Brown
Coleman

Ø Note: when used with multiple columns, DISTINCT must be
specified first. Applies to all columns
– Can’t do SELECT Degree, DISTINCT Salary
– Can do SELECT DISTINCT Salary, Degree

• Creates distinct instances of the combined values from each

Handling Distinct Column
Values: DISTINCT Keyword

SELECT Distinct LastName
FROM Employees
ORDER BY Lastname

our practice makes you perfect SM www.systemanage.com

Handling Distinct Column
Values: CFOUTPUT GROUP
Ø Could have solved that same problem in CF

– Either manually (don’t do it!)
– Or by way of CFOUTPUT’s GROUP attribute

• Provide name of column by which data was sorted
• Will show only the unique values of that column

Ø Would produce equivalent result to that on previous slide
– Note that it has nothing to do with GROUP in SQL (later)
– It works. But for this problem, DISTINCT is better
– Power of CFOUTPUT GROUP, though, is in showing both the

distinct values and all the other rows for each value

<CFQUERY DATASOURCE=“ProdPrsnl” NAME=“GetEmployees”>
SELECT LastName FROM Employees
ORDER BY LastName

</CFQUERY>
<CFOUTPUT QUERY=“GetEmployees” GROUP=“LastName”>

#LastName#

</CFOUTPUT>

6

our practice makes you perfect SM www.systemanage.com

Handling Distinct Column Values:
CFOUTPUT GROUP (cont.)
Ø Problem: Create a phone directory with each lastname listed

only once
Ø Solution: CFOUTPUT GROUP, with embedded CFOUTPUT to

process each row per unique value
Ø Example:

Ø Possible Results:
Abbot
John A – x3456
John R – x3476
Brown
Alice C – x3421
Coleman
Bob H – x3499

<CFQUERY DATASOURCE=“ProdPrsnl” NAME=“GetEmployees”>
SELECT LastName, Minit, FirstName, Phone
FROM Employees
ORDER BY LastName

</CFQUERY>
<CFOUTPUT QUERY=“GetEmployees” GROUP=“LastName”>

<u>#LastName#</u>

<CFOUTPUT>

#FirstName# #Minit# - #Phone#

</CFOUTPUT>

</CFOUTPUT>

Once per
LastName

Once for each
row having
that LastName

our practice makes you perfect SM www.systemanage.com

Handling Distinct Column Values:
CFOUTPUT GROUP (cont.)
Ø Can nest CFOUTPUT Groups

– Once for each ORDER BY column listed
Ø Example:

Ø Possible Results:
Abbot
John

• A - x3456
• R - x3476

Brown
Alice

• C - x3421
Coleman
Bob

• H – x3499

<CFQUERY DATASOURCE=“ProdPrsnl” NAME=“GetEmployees”>
SELECT LastName, FirstName, Minit, Phone
FROM Employees
ORDER BY LastName, FirstName

</CFQUERY>
<CFOUTPUT QUERY=“GetEmployees” GROUP=“LastName”>

<u>#LastName#</u>

<CFOUTPUT GROUP=“FirstName”>

#FirstName#

<CFOUTPUT>

#Minit# - #Phone#
</CFOUTPUT>

</CFOUTPUT>
</CFOUTPUT>

No QUERY
attribute

Once for each
row having
same
LastName and
FirstName

7

our practice makes you perfect SM www.systemanage.com

Manipulating Data with SQL

Ø Typical Problems:
– Show the first 30 characters of a description column
– Find rows where the year in a date column is a

particular year

Ø Tempting to try with CF functions
– May be wasteful, or impossible

Ø SQL functions may be more efficient, and could
even have more features
– In any case, remember admonition:

• Don’t do in CF that which you can do in SQL
– Beware: while some SQL functions are shared by all

DBMS’s, each supports its own or variations

our practice makes you perfect SM www.systemanage.com

Manipulating Data with SQL:
Text Functions
Ø Problem: Show the first 30 characters of a

description column
– Can certainly use CF’s Left() function to substring

the result passed back from SQL
• But this means sending all data from DB to CF, only

to then be stripped down to 30 chars. Wasteful!

Ø Solution: Use SQL Left() function

Ø Example:

Ø Note: There are many other similar text
manipulation functions, depending on DBMS
– Length(), Lower(), Upper(), Ltrim(), Soundex(), etc.
– Investigate DBMS documentation to learn more

SELECT Left(Description,30) FROM Products

8

our practice makes you perfect SM www.systemanage.com

Manipulating Data with SQL:
Date Functions
Ø Problem: Find rows where the year in a date column is a

particular year
– Assuming date column contains month, day, and year, how to

just search on year?
– Could find records between 01/01/xx and 12/31/xx

Ø Solution: Use SQL DatePart() function
Ø Example:

Ø Note: each DBMS will have its own date handling functions
and function arguments
– This example is from Access. Could also use Year(HireDate)

Ø There are many other similar date manipulation functions,
depending on DBMS
– Also will find numeric functions, system functions, and more

SELECT * FROM Employees
WHERE DatePart(“yyyy”,HireDate) = 2001

our practice makes you perfect SM www.systemanage.com

Summarizing Data with SQL

Ø Typical Problems:
– Show how many employees we have
– Show how many employees make more than $40k
– Count how many employees have not been terminated
– Show the average, max, and min salary for all employees
– Show the total salary for all employees
– Show how many distinct salary levels there are

Ø Again, tempting to try with CF processing
– May be complicated, wasteful
– SQL functions may be more efficient, more powerful
– SQL functions for summarixing data are known as “aggregate

functions”: Count, Min, Max, Avg, Sum
• Others include StdDev (standard deviation), Var (variance)

9

our practice makes you perfect SM www.systemanage.com

Summarizing Data with SQL:
Count(*) Function
Ø Problem: Show how many employees we have

– Yes, we can find all records and look at recordcount
• But if all we want it the count, this is wasteful!!!

Ø Solution: Use SQL Count(*) function
Ø Example:

Ø Possible Query Result Set Values:
Total Employees: 54

Ø Notes:
– We must use a column alias in order to refer to that count

within ColdFusion
– Returns only a single-record resultset (and does it FAST!)
– Not to be confused with SELECT * (which is SLOW!)

<CFQUERY DATASOURCE=“ProdPrsnl” NAME=“GetEmployees”>
SELECT Count(*) as RecCount
FROM Employees

</CFQUERY>
<CFOUTPUT>

Total Employees: #GetEmployees.RecCount#

</CFOUTPUT>

our practice makes you perfect SM www.systemanage.com

Summarizing Data with SQL:
Count(*) Function and Filter
Ø Problem: Show how many employees make more

than $40k

Ø Solution: Use SQL Count(*) function and a filter
– Simple matter of adding a WHERE clause to

indicate the desired criteria

Ø Example: <CFQUERY DATASOURCE=“ProdPrsnl” NAME=“GetEmployees”>
SELECT Count(*) as RecCount
FROM Employees
WHERE Salary > 40000

</CFQUERY>
<CFOUTPUT>
Num. employees making +40k: #GetEmployees.RecCount#

</CFOUTPUT>

10

our practice makes you perfect SM www.systemanage.com

Summarizing Data with SQL:
Count(col) Function
Ø Problem: Count how many employees have been terminated

Ø Solution: Use SQL Count(column) function
– Instead of counting all records, count all having a value for a

given column
– Assume terminated employees have a value in the

TerminationDate column

Ø Example:

Ø Note: doesn’t count records having null column value
– Will discuss nulls later
– In this case, the behavior is as expected. May not always be

<CFQUERY DATASOURCE=“ProdPrsnl” NAME=“GetEmployees”>
SELECT Count(TerminationDate) as RecCount
FROM Employees

</CFQUERY>
<CFOUTPUT>
Num. Employees terminated: #GetEmployees.RecCount#

</CFOUTPUT>

our practice makes you perfect SM www.systemanage.com

Summarizing Data with SQL:
AVG/MAX/MIN Functions
Ø Problem: Show the average, max, and min salary for all

employees
Ø Solution: Use SQL Avg(), Min(), or Max() functions

– Besides just counting records having any value for a given
column, can also use these functions to summarize

Ø Example:

Ø Notes:
– Like Count(column) function, these functions ignores columns

with null values
• I.e., is average of records having a value for that column

– Also, can add a filter in order to compute summaries for
records meeting some other criteria

<CFQUERY DATASOURCE=“ProdPrsnl” NAME=“GetEmployees”>
SELECT Avg(Salary) as AvgSal, Min(Salary) as MinSal,

Max(Salary) as MaxSal
FROM Employees

</CFQUERY>
<CFOUTPUT>
Avg Sal: #GetEmployees.AvgSal#
 ...

</CFOUTPUT>

11

our practice makes you perfect SM www.systemanage.com

Summarizing Data with SQL:
SUM Function
Ø Problem: Show the total salary for all employees

Ø Solution: Use SQL Sum() function
– Just as other functions compute Avg/Min/Max, can

use Sum function to add up all values of column

Ø Example:

Ø Notes:
– Can also perform mathematical computation on the

column and sum that:
SELECT SUM(Salary * 1.20)

– Or perform computation between two or more
columns and sum that, as in:
SELECT SUM(Salary*RaisePct)

SELECT Sum(Salary) as SumSal
FROM Employees

our practice makes you perfect SM www.systemanage.com

Summarizing Data with SQL:
Using DISTINCT with Functions
Ø Problem: Show how many distinct salary levels there are

Ø Solution: Use DISTINCT keyword with functions
– Rather than perform given function against all values of the

given column in all records, can performs it against only the
unique values that exist

Ø Example:

Ø Notes:
– Note that this will produce just one number: the number of

distinct salary values that exist
• To produce instead a count of employees at each salary level,

need to learn about SQL GROUP BY clause (coming next)

– Can also use AVG (average of distinct values rather than of
all values). MIN and MAX would return same result either way

SELECT Count(DISTINCT Salary) as NumDistinctSals
FROM Employees

12

our practice makes you perfect SM www.systemanage.com

Summarizing Data with SQL:
Using DISTINCT with Functions
Ø Notes:

– Note also, there’s an opposing ALL keyword that
can be used, instead of DISTINCT; performs
aggregation against all values

• This is the default and doesn’t need to be specified
– MS Access does not support this use of DISTINCT

(or ALL) within aggregate functions

our practice makes you perfect SM www.systemanage.com

Grouping Data with SQL

Ø Typical Problems:
– Show those counts, averages, or totals by

department
– Show which departments have count/avg/total

meets some criteria

Ø SQL provides a GROUP BY clause that can be
used to create a list of unique values for a column
– Difference from DISTINCT is that it also “rolls up”

the rows
• aggregates some computation over all the records

having that unique value

13

our practice makes you perfect SM www.systemanage.com

Grouping Data with SQL

Ø Assume the employees table has a Dept column

Ø Example:

Ø Note: this simple example creates a result no
different than SELECT DISTINCT Dept
– You would not typically use this statement, because

you’re also asking the DB to “roll up” rows having
the same value of Dept, but are aggregating nothing

– Difference comes when combined with the
previously presented aggregate functions, which
then aggregate the data BY the unique “grouped”
column values

SELECT Dept FROM Employees
GROUP BY Dept

our practice makes you perfect SM www.systemanage.com

Grouping Data with SQL: Using
GROUP BY with Count Function
Ø Problem: Show count of employees by department
Ø Solution: Use GROUP BY with COUNT(*) function
Ø Example:

Ø Possible Query Result Set Values:

Ø Notes:
– In example, first row in resultset represents records with null

value for Dept column
– Order of rows is random. Could add ORDER BY Dept

• If present, must be specified AFTER the GROUP BY

SELECT Dept, Count(*) as CountEmp
FROM Employees
GROUP BY Dept

33Engineering

15Sales

4

7Marketing

14

our practice makes you perfect SM www.systemanage.com

Grouping Data with SQL: Using
GROUP BY with Avg Function
Ø Problem: Show average salary by department

Ø Solution: Use GROUP BY with Avg(column) function
– Aggregate on a column other than that being grouped

Ø Example:

Ø Possible Query Result Set Values:

Ø Notes:
– Could use Min/Max/Count(column) too

SELECT Dept, Avg(Salary) as AvgSalary
FROM Employees
GROUP BY Dept

75500Engineering

83276Sales

45687

55000Marketing

our practice makes you perfect SM www.systemanage.com

Grouping Data with SQL: Using
GROUP BY with Functions
Ø More notes:

– Columns to be SELECTed can only be aggregate
functions and/or column named in GROUP BY

• Could not SELECT Lastname, Count(*) FROM Employees
GROUP BY Dept

– Since LastName isn’t being GROUPed and isn’t
an aggregate function itself

– Often a source of confusion, though it clearly
wouldn’t make sense to show LastName here

15

our practice makes you perfect SM www.systemanage.com

Grouping Data with SQL: Using
GROUP BY with Filter
Ø Problem: Show average salary by departments of

employees who’ve completed grade 12

Ø Solution: Use GROUP BY with filter
– WHERE clause limits which records are to be GROUPed

Ø Example:

Ø More notes:
– WHERE must occur after FROM, before GROUP

• Order of appearance:
– FROM, WHERE, GROUP BY, ORDER BY

– To select records whose aggregated values meet some
criteria, use HAVING clause

SELECT Dept, Avg(Salary) as AvgSalary
FROM Employees
WHERE GradeCompleted >= 12
GROUP BY Dept

our practice makes you perfect SM www.systemanage.com

Grouping Data with SQL: Using
GROUP BY with HAVING
Ø Problem: Show departments whose employees have an

average salary greater than $40,000

Ø Solution: Use GROUP BY with HAVING

Ø Example:

Ø Note:
– HAVING must occur after GROUP BY, before ORDER BY
– Order of appearance:

• FROM, WHERE, GROUP BY, HAVING, ORDER BY

– Expression in HAVING can’t refer to alias from SELECT
clause

• In example above, couldn’t use HAVING AvgSalary > 40000

SELECT Dept, Avg(Salary) as AvgSalary
FROM Employees
GROUP BY Dept
HAVING Avg(Salary) > 40000

16

our practice makes you perfect SM www.systemanage.com

Subjects of Part 2

Ø Slicing and Dicing Data in CF and SQL: Part 2
– Cross-Referencing Tables (Inner and Outer Joins)
– Handling Long Text
– Handling Nulls

our practice makes you perfect SM www.systemanage.com

Some Other Tidbits for You to
Investigate
Ø Nesting multiple joins

Ø TOP, TOP n PERCENT options on SELECT

Ø UNIONs

Ø Nested Subquery

Ø EXISTS predicate

Ø Using NULL in INSERT, UPDATE

17

our practice makes you perfect SM www.systemanage.com

Where to Learn More

Ø Version 5 CF manuals:
– Installing and Configuring ColdFusion Server
– Developing ColdFusion Applications
– CFML Reference

Ø Books by Ben Forta:
– Teach Yourself SQL in 10 Minutes
– Certified ColdFusion Developer Study Guide
– ColdFusion Web Application Construction Kit
– Advanced ColdFusion Development

Ø Many other CF and SQL books available, including
– Practical SQL Handbook (new edition available)
– SQL For Smarties (any Joe Celko book)

our practice makes you perfect SM www.systemanage.com

Contact Information

Contact for follow-up issues
– Email: carehart@systemanage.com
– Phone: (301) 604-8399
– Web: www.systemanage.com

Also available for
– Training (custom or pre-written)

• CF, DB, Jrun/J2EE, Javascript, wireless, and more
– Consulting (very short-term engagements)

• best practices, architecture, setup, troubleshooting, etc.

– Developer Group Mentoring, and more

18

our practice makes you perfect SM www.systemanage.com

Q&A

?

