
1

our practice makes you perfect SM www.systemanage.com

Slicing and Dicing Data in
CF and SQL: Part 2
Charlie Arehart
Founder/CTO Systemanage
carehart@systemanage.com

SysteManage: our practice makes you perfect SM

our practice makes you perfect SM www.systemanage.com

Agenda

Ø Slicing and Dicing Data in Many Ways

Ø Cross-Referencing Tables (Joins)

Ø Handling Nulls

Ø Handling Long Text

ØWhere to Learn More

Ø Q&A

2

our practice makes you perfect SM www.systemanage.com

Slicing and Dicing Data in Many
Ways
Ø As we learned in Part 1, there’s more to database

processing than simply selecting columns for
display. May want to massage the data:
– Handling distinct column values

• Show each distinct lastname for employees
• Create a phone directory with each lastname listed

only once
– Manipulating data before or after selecting it

• Show the first 30 characters of a description column
• Find rows where the year in a date column is a

particular year

our practice makes you perfect SM www.systemanage.com

Slicing and Dicing Data in Many
Ways (cont.)
Ø May also want to:

– Cross-reference tables
• Show each employee and their department
• Show all employees and their department, even if not

assigned to one
• Show each employee and their manager

– Handle Nulls
• Show employees who have not been terminated

(TerminationDate column is null)
• Count how many employees do not live in NYC

– Handle Long Text Fields
• Retrieve a column that has thousands of characters

3

our practice makes you perfect SM www.systemanage.com

Working with Data in SQL
Versus ColdFusion
Ø SQL provides the means to do each of those tasks

– And ColdFusion has some means to do some of them
Ø Many developers create complicated CF programs to do

what both CF and SQL can enable with simpler constructs
– Same problems arise in other web app dev environments

Ø Experienced developers will admonish:
– Don’t do things in your program that you can better do in SQL
– The challenge is deciding which to use

Ø This seminar is about:
– making maximum use of both CF and SQL for query

processing and data manipulation
– saving time for you and your system
– creating more effective applications
– Only 1 topic, though, is CF-specific. Rest is pure SQL

our practice makes you perfect SM www.systemanage.com

Understanding Relational
Database Design

Ø Relational Databases are comprised of several tables, each
storing data about a particular aspect of the subject being
described

Ø Goals are:
– store only related data in a single table
– don’t repeat data (don’t store it in more than one place)
– ensure integrity of data cross-referenced between tables

Ø Can be challenging to cross-reference that data

Personnel

Departments

Offices

Employees

4

our practice makes you perfect SM www.systemanage.com

Understanding Foreign Keys

Ø Recall previous examples of GROUPing on Dept column
– Assumed that Employees table had DEPT column holding

string values for department name

– Problems with this include:
• We’re storing the same string multiple times on many records
• If a mistake is made entering a given value, that record will no

longer be found in searches on value (see EmpID 4)

Engineering12-01-00Cindy2

Sales06-04-98Bob1

4

3

EmpID

Employees

Enginering05-30-99Beth

Sales01-01-01John

DeptHireDateName

our practice makes you perfect SM www.systemanage.com

Understanding Foreign Keys

Ø More appropriate solution:
– Have Department table with just a list of each valid Dept and

a unique DeptID (that table’s primary key)
– Then in Employees table, simply store that DeptID to indicate

an employee’s department

• This DeptID in the Employees table is called a Foreign Key
– Since it holds a value that comes from the primary key of

another table
– This is the fundamental aspect of a “relational” design

212-01-00Cindy2

106-04-98Bob1

4

3

EmpID

Employees

205-30-99Beth

101-01-01John

DeptIDHireDateName

Engineering2
Sales1
DeptDeptID

Departments

5

our practice makes you perfect SM www.systemanage.com

Cross-Referencing Tables
(Joins)
Ø Typical Problems:

– Show each employee and their department
– Show all employees and their department, even if not

assigned to one
– Show each employee and their manager

Ø May be tempting for beginners to loop through resultset of
one query (departments) and search for related records
(employees for each dept)
– Bad! Bad! Bad!
– Correct solution is to instead JOIN the tables together
– There are several kinds of joins, each serving different

purposes

our practice makes you perfect SM www.systemanage.com

Understanding Joins

Ø To retrieve data from multiple tables, simply list both tables
in FROM clause, such as:

– Note that if columns of the same name existed in each table,
we’d need to prefix the table name to the column

Ø Only problem is that this selects all combinations of the
values in the two columns
– In our example table, would create 8 rows in result

• 4 employees times 2 departments

– Not really what we likely wanted
• Called a cartesian product or a cross join EngineeringJohn

SalesJohn

SalesBeth

SalesCindy

EngineeringBob

EngineeringCindy

EngineeringBeth

SalesBob

SELECT Name, Dept
FROM Employees, Departments

6

our practice makes you perfect SM www.systemanage.com

Inner Joins

Ø Problem: Show each employee and their department

Ø Solution: Perform Inner Join of the two tables
– indicate columns in each table that share common value. SQL

automatically matches them
• Typically, where one table’s foreign key maps to its

corresponding primary key in a related table

Ø Example:

Ø Correct Result:

Ø Note: the datatype of the columns being joined must match

SELECT Name, Dept
FROM Employees, Departments
WHERE Employees.DeptID = Departments.DeptID

SalesJohn

EngineeringBeth

EngineeringCindy

SalesBob

our practice makes you perfect SM www.systemanage.com

Join via WHERE vs JOIN clause

Ø ANSI SQL standard (and most databases) supports an
alternative means of indicating joins
– Rather than indicate joined columns in WHERE clause

• Use them with JOIN keyword on FROM clause

Ø Example:

Ø Notes:
– If INNER keyword is not specified, INNER may be assumed

• Not true in MS Access
– Can join more than two tables with additional join clauses (of

either format)
• Any limit will be set by DBMS
• Practical limit is that performance suffers with too many joins in a

single SELECT

SELECT Name, Dept
FROM Employees INNER JOIN Departments
ON Employees.DeptID = Departments.DeptID

7

our practice makes you perfect SM www.systemanage.com

Outer Joins

Ø With inner join, if value of join columns don’t match, records
will not be retrieved
– Unexpected problems can occur when foreign key is null

Ø Assume we had at least one employee with no department
indicated (null value for DeptID)

– With inner join, his record will not be displayed at all
• he has no DeptID to match on DeptIDs in Departments table

– Could be a real problem if expecting SELECT to show all
employees!

11-22-00Bill5

EmpID
Employees

DeptIDHireDateName

our practice makes you perfect SM www.systemanage.com

Outer Joins

Ø Problem: Show all employees and their department, even if
not assigned to one

Ø Solution: Perform Outer Join of the two tables
Ø Example:

Ø Possible Query Result Set Values:

Notes:
– This example indicated LEFT OUTER JOIN: there are 2 other

types
• LEFT join means retrieve all rows from table on left of JOIN even

if they don’t have match for join column in right table
– Creates null values in join columns that did not match

SELECT Name, Dept
FROM Employees LEFT OUTER JOIN Departments
ON Employees.DeptID = Departments.DeptID

EngineeringBeth

SalesJohn

Bill

EngineeringCindy

SalesBob

8

our practice makes you perfect SM www.systemanage.com

Outer Joins (cont.)

Ø WHERE clause syntax for LEFT join:
WHERE ON Employees.DeptID *= Departments.DeptID

– Syntax not supported in MS Access
Ø Two other kinds of Outer joins:

– RIGHT OUTER JOIN retrieves all rows from table on right
• In current example, that would be useful if we had a row in

Departments not pointed to by an employee

• A RIGHT join would then show a row in the resultset for
Accounting (with name being null)

– Even though no employees had that DeptID
• WHERE clause syntax for LEFT join (where supported):

WHERE ON Employees.DeptID =* Departments.DeptID

Accounting5

DeptDeptID

Departments

our practice makes you perfect SM www.systemanage.com

Outer Joins (cont.)

Ø Second kind of Outer join
– A FULL OUTER JOIN (or FULL JOIN) retrieves

rows from both tables even if join values don’t match
• In current example, would show both:

– a row for Bill with no department and
– A row with no employee name for Accounting

– Not supported in MS Access
– No equivalent WHERE clause syntax at all

9

our practice makes you perfect SM www.systemanage.com

Self-Joins

Ø Is possible to join a table to itself

Ø Assume Employees table has column for
ManagerID, to indicate each employees manager
– Values for that ManagerID column simply point to

the EmpID for their manager

– How to show who works for who?
10-10-97Bill5

5

1

4

5

ManagerID

212-01-00Cindy2

106-04-98Bob1

4

3

EmpID

Employees

205-30-99Beth

101-01-01John

DeptIDHireDateName

our practice makes you perfect SM www.systemanage.com

Self-Joins

Ø Problem: Show each employee and their manager
Ø Solution: Use self-join (just join table to itself using alias)

– There is no SELF keyword
Ø Example:

Ø Possible Query Result Set Values:

Ø Note: Why isn’t Bill listed?
– This was an INNER join. He has null ManagerID

• We can see from others that he’s the boss and has no boss
• To show him in table, would need OUTER join

SELECT Employees.Name, Employees.Dept, Mgr.Name
FROM Employees INNER JOIN Employees as Mgr
ON Employees.ManagerID = Mgr.EmpID

Bill

Bob

Beth

Bill

EngineeringBeth

SalesJohn

EngineeringCindy

SalesBob

10

our practice makes you perfect SM www.systemanage.com

Handling Nulls

Ø About Nulls
– Columns that have no value are considered NULL

• Null is not the same as a space or 0 or empty string
(““). It’s no value at all

– A column can be defined to not allow nulls
– Can select which columns are or aren’t null with IS

NULL or IS NOT NULL in WHERE clause
– When a column with a null value is selected and

referred to the ColdFusion variable for the column, it
will appear as an empty string

Ø Typical Problems:
– Show employees who have not been terminated
– Count how many employees do not live in NYC

our practice makes you perfect SM www.systemanage.com

Handling Nulls: Searching for
Nulls
Ø Problem: Show employees who have not been

terminated
– Assume TerminationDate is null if not yet terminated

Ø Solution: Use IS NULL in WHERE clause

Ø Example: SELECT *
FROM Employees
WHERE TerminationDate IS NULL

11

our practice makes you perfect SM www.systemanage.com

Handling Nulls: Negated
Searching And Impact of Nulls
Ø Problem: Count how many employees do not live in NYC

– Be careful selecting records that don’t have some given value
– Tempting to use:

Select count(*)
FROM Employees
WHERE City <> ‘New York’

– Problem is it doesn’t find records that don’t have a value for
city

• Consider 200 records: 10 in New York, 5 are null
• Is answer 185 or 190? Depends on if you think nulls count

– City <> ‘New York’ ignores records with null values (null is
neither equal to nor not equal to “new york”

Ø Solution: May want to add “OR column IS NULL”
Ø Example: SELECT Count(*)

FROM Employees
WHERE CITY <> ‘New York’
OR CITY IS NULL

our practice makes you perfect SM www.systemanage.com

Handling Long Text

Ø See Long Text Retrieval Settings for a given ODBC
datasource in CF Administrator
– Hidden under “CF Settings” button
– Can enable retrieval of very long text fields
– Enabling the option will hamper query performance

Ø May want to consider creating multiple
datasources for same database
– one for when retrieving such columns
– one for when not doing so

Ø Place long text fields last in list of columns being
SELECTed

12

our practice makes you perfect SM www.systemanage.com

Some Other Tidbits for You to
Investigate
Ø Nesting multiple joins

Ø TOP, TOP n PERCENT options on SELECT

Ø UNIONs

Ø Nested Subquery

Ø EXISTS predicate

Ø Using NULL in INSERT, UPDATE

our practice makes you perfect SM www.systemanage.com

Where to Learn More

Ø Version 5 CF manuals:
– Installing and Configuring ColdFusion Server
– Developing ColdFusion Applications
– CFML Reference

Ø Books by Ben Forta:
– Teach Yourself SQL in 10 Minutes
– Certified ColdFusion Developer Study Guide
– ColdFusion Web Application Construction Kit
– Advanced ColdFusion Development

Ø Many other CF and SQL books available, including
– Practical SQL Handbook (new edition available)
– SQL For Smarties (any Joe Celko book)

